Code Nano-Pattern Detection using Deep Learning

Anubhav Trivedi, J. Thakur, Atul Gupta
{"title":"Code Nano-Pattern Detection using Deep Learning","authors":"Anubhav Trivedi, J. Thakur, Atul Gupta","doi":"10.1145/3385032.3385050","DOIUrl":null,"url":null,"abstract":"Nano-patterns are the method-level code building blocks of the code which can reveal crucial information of the code. In this paper, we present some initial results of our investigation to detect nano-patterns in a Java code using a deep learning approach. For this purpose, first, we generated a method level tagged corpus for 15 nano-patterns using nine open source Java projects. Subsequently, the tagged corpus was used to train a Long Short-Term Memory (LSTM) network to predict the nano-patterns present in the Java code. Our deep learning model gave an average accuracy of 88.3% with an average precision of 74.4% and average recall of 78.3%.","PeriodicalId":382901,"journal":{"name":"Proceedings of the 13th Innovations in Software Engineering Conference on Formerly known as India Software Engineering Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th Innovations in Software Engineering Conference on Formerly known as India Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385032.3385050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nano-patterns are the method-level code building blocks of the code which can reveal crucial information of the code. In this paper, we present some initial results of our investigation to detect nano-patterns in a Java code using a deep learning approach. For this purpose, first, we generated a method level tagged corpus for 15 nano-patterns using nine open source Java projects. Subsequently, the tagged corpus was used to train a Long Short-Term Memory (LSTM) network to predict the nano-patterns present in the Java code. Our deep learning model gave an average accuracy of 88.3% with an average precision of 74.4% and average recall of 78.3%.
代码纳米模式检测使用深度学习
纳米模式是代码的方法级代码构建块,可以揭示代码的关键信息。在本文中,我们介绍了使用深度学习方法检测Java代码中的纳米模式的一些初步研究结果。为此,首先,我们使用9个开源Java项目为15个纳米模式生成了一个方法级标记语料库。随后,标记的语料库被用于训练长短期记忆(LSTM)网络,以预测Java代码中存在的纳米模式。我们的深度学习模型的平均准确率为88.3%,平均精度为74.4%,平均召回率为78.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信