{"title":"Enhanced Precoding aided Generalized Spatial Modulation for Massive MIMO Systems","authors":"K. S. Sanila, R. Neelakandan","doi":"10.1109/NCC52529.2021.9530110","DOIUrl":null,"url":null,"abstract":"Receive spatial modulation (RSM) is one of the most promising paradigms that significantly reduces the receiver's computational complexity. However, to assure the linear precoding operation at the transmitter side, RSM systems have to be under-determined. We propose a transmission scheme that divides antennas at the transmitter into Gt transmit antenna groups (TAGs) and antennas at the receiver into Gr receive antenna groups (RAGs) for exploiting the SM concept at the transceiver ends. Additionally, we extend the notion of generalized spatial modulation (GSM) to a new precoding-aided massive multiple-input multiple-output (mMIMO) system and formulate the structure, particularly in an activated antenna group at the transmitter and receiver. We refer to it as an enhanced receive GSM (ERGSM) system. The antenna grouping makes the proposed GRSM based scheme suitable for both the underdetermined and over-determined massive MIMO architectures according to the distribution of the number of TAGs and RAGs and thus increases the resilience of the system. We project a low complexity sub-optimal detection algorithm for the proposed scheme. Further, we computed the complex calculations required for the system and compared them to the other conventional techniques. Also, we present numerical results to substantiate our ideas.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Receive spatial modulation (RSM) is one of the most promising paradigms that significantly reduces the receiver's computational complexity. However, to assure the linear precoding operation at the transmitter side, RSM systems have to be under-determined. We propose a transmission scheme that divides antennas at the transmitter into Gt transmit antenna groups (TAGs) and antennas at the receiver into Gr receive antenna groups (RAGs) for exploiting the SM concept at the transceiver ends. Additionally, we extend the notion of generalized spatial modulation (GSM) to a new precoding-aided massive multiple-input multiple-output (mMIMO) system and formulate the structure, particularly in an activated antenna group at the transmitter and receiver. We refer to it as an enhanced receive GSM (ERGSM) system. The antenna grouping makes the proposed GRSM based scheme suitable for both the underdetermined and over-determined massive MIMO architectures according to the distribution of the number of TAGs and RAGs and thus increases the resilience of the system. We project a low complexity sub-optimal detection algorithm for the proposed scheme. Further, we computed the complex calculations required for the system and compared them to the other conventional techniques. Also, we present numerical results to substantiate our ideas.