Predicting Completeness in Knowledge Bases

Luis Galárraga, Simon Razniewski, Antoine Amarilli, Fabian M. Suchanek
{"title":"Predicting Completeness in Knowledge Bases","authors":"Luis Galárraga, Simon Razniewski, Antoine Amarilli, Fabian M. Suchanek","doi":"10.1145/3018661.3018739","DOIUrl":null,"url":null,"abstract":"Knowledge bases such as Wikidata, DBpedia, or YAGO contain millions of entities and facts. In some knowledge bases, the correctness of these facts has been evaluated. However, much less is known about their completeness, i.e., the proportion of real facts that the knowledge bases cover. In this work, we investigate different signals to identify the areas where a knowledge base is complete. We show that we can combine these signals in a rule mining approach, which allows us to predict where facts may be missing. We also show that completeness predictions can help other applications such as fact prediction.","PeriodicalId":344017,"journal":{"name":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018661.3018739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

Knowledge bases such as Wikidata, DBpedia, or YAGO contain millions of entities and facts. In some knowledge bases, the correctness of these facts has been evaluated. However, much less is known about their completeness, i.e., the proportion of real facts that the knowledge bases cover. In this work, we investigate different signals to identify the areas where a knowledge base is complete. We show that we can combine these signals in a rule mining approach, which allows us to predict where facts may be missing. We also show that completeness predictions can help other applications such as fact prediction.
预测知识库的完整性
Wikidata、DBpedia或YAGO等知识库包含数百万个实体和事实。在一些知识库中,对这些事实的正确性进行了评估。然而,人们对它们的完整性知之甚少,即知识库所涵盖的真实事实的比例。在这项工作中,我们研究了不同的信号来识别知识库完整的区域。我们展示了我们可以在规则挖掘方法中组合这些信号,这允许我们预测可能丢失的事实。我们还展示了完备性预测可以帮助其他应用程序,如事实预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信