Evaluación de la regresión logística como clasificador de espectros Raman en el diagnóstico automático de cáncer de mama

Israel De La Parra-González, Francisco Javier Luna-Rosas, Laura C. Rodríguez-Martínez, Claudio Frausto-Reyes
{"title":"Evaluación de la regresión logística como clasificador de espectros Raman en el diagnóstico automático de cáncer de mama","authors":"Israel De La Parra-González, Francisco Javier Luna-Rosas, Laura C. Rodríguez-Martínez, Claudio Frausto-Reyes","doi":"10.35429/JBEB.2020.12.4.1.12","DOIUrl":null,"url":null,"abstract":"We evaluated logistic regression as a classifier in the diagnosis of breast cancer based on Raman spectra. Common studies published in the subject use dimensional reduction techniques to generate the classifier. Instead, we proposed to observe the effect of using all intensity values recorded in the spectra as input variables to the algorithm. We used leaving one out cross-validation measuring classification accuracy, sensitivity and specificity. We used Raman spectra taken from breast tissue previously diagnosed by histopathological analysis, some from healthy tissue and some from tissue with cancer. Each spectrum is formed by 605 intensity values in the range of 687 to 1781 cm-1. Logistic regression classifier exhibited 100% classification accuracy. To establish comparative references, we evaluated in the same way: 1) a logistic model preceded by dimensional reduction with Principal Component Analysis (PCA+LR), 2) two classifiers obtained with weighted K nearest neighbors algorithm, and 3) a classifier using the naive Bayes (NB) algorithm. We found that PCA+LR and NB showed the same performance of 100% in classification accuracy. Nevertheless, PCA+LR requires more processing computational time.","PeriodicalId":264276,"journal":{"name":"Revista de Ingeniería Biomédica y Biotecnología","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Ingeniería Biomédica y Biotecnología","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35429/JBEB.2020.12.4.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We evaluated logistic regression as a classifier in the diagnosis of breast cancer based on Raman spectra. Common studies published in the subject use dimensional reduction techniques to generate the classifier. Instead, we proposed to observe the effect of using all intensity values recorded in the spectra as input variables to the algorithm. We used leaving one out cross-validation measuring classification accuracy, sensitivity and specificity. We used Raman spectra taken from breast tissue previously diagnosed by histopathological analysis, some from healthy tissue and some from tissue with cancer. Each spectrum is formed by 605 intensity values in the range of 687 to 1781 cm-1. Logistic regression classifier exhibited 100% classification accuracy. To establish comparative references, we evaluated in the same way: 1) a logistic model preceded by dimensional reduction with Principal Component Analysis (PCA+LR), 2) two classifiers obtained with weighted K nearest neighbors algorithm, and 3) a classifier using the naive Bayes (NB) algorithm. We found that PCA+LR and NB showed the same performance of 100% in classification accuracy. Nevertheless, PCA+LR requires more processing computational time.
logistic回归作为拉曼光谱分类器在乳腺癌自动诊断中的评价
我们评估了逻辑回归作为基于拉曼光谱诊断乳腺癌的分类器。在该主题中发表的常见研究使用降维技术来生成分类器。相反,我们建议观察使用光谱中记录的所有强度值作为算法的输入变量的效果。我们使用留一交叉验证测量分类准确性、敏感性和特异性。我们使用的拉曼光谱取自先前通过组织病理学分析诊断的乳腺组织,一些来自健康组织,一些来自癌症组织。每个光谱由687 ~ 1781 cm-1范围内的605个强度值组成。逻辑回归分类器的分类准确率为100%。为了建立比较参考,我们以相同的方式进行评估:1)使用主成分分析(PCA+LR)进行降维的逻辑模型,2)使用加权K近邻算法获得的两个分类器,以及3)使用朴素贝叶斯(NB)算法的分类器。我们发现PCA+LR和NB在分类准确率上表现相同,均为100%。然而,PCA+LR需要更多的处理计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信