The Effect of Penalty Factors of Constrained Hamiltonians on the Eigenspectrum in Quantum Annealing

Christoph Roch, Daniel Ratke, Jonas Nüßlein, Thomas Gabor, Sebastian Feld
{"title":"The Effect of Penalty Factors of Constrained Hamiltonians on the Eigenspectrum in Quantum Annealing","authors":"Christoph Roch, Daniel Ratke, Jonas Nüßlein, Thomas Gabor, Sebastian Feld","doi":"10.1145/3577202","DOIUrl":null,"url":null,"abstract":"Constrained optimization problems are usually translated to (naturally unconstrained) Ising formulations by introducing soft penalty terms for the previously hard constraints. In this work, we empirically demonstrate that assigning the appropriate weight to these penalty terms leads to an enlargement of the minimum spectral gap in the corresponding eigenspectrum, which also leads to a better solution quality on actual quantum annealing hardware. We apply machine learning methods to analyze the correlations of the penalty factors and the minimum spectral gap for six selected constrained optimization problems and show that regression using a neural network allows to predict the best penalty factors in our settings for various problem instances. Additionally, we observe that problem instances with a single global optimum are easier to optimize in contrast to ones with multiple global optima.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constrained optimization problems are usually translated to (naturally unconstrained) Ising formulations by introducing soft penalty terms for the previously hard constraints. In this work, we empirically demonstrate that assigning the appropriate weight to these penalty terms leads to an enlargement of the minimum spectral gap in the corresponding eigenspectrum, which also leads to a better solution quality on actual quantum annealing hardware. We apply machine learning methods to analyze the correlations of the penalty factors and the minimum spectral gap for six selected constrained optimization problems and show that regression using a neural network allows to predict the best penalty factors in our settings for various problem instances. Additionally, we observe that problem instances with a single global optimum are easier to optimize in contrast to ones with multiple global optima.
量子退火中约束哈密顿算子惩罚因子对特征谱的影响
约束优化问题通常通过为先前的硬约束引入软惩罚项而转化为(自然无约束的)伊辛公式。在这项工作中,我们通过经验证明,为这些惩罚项分配适当的权重会导致相应特征谱中的最小谱隙的扩大,这也会导致在实际量子退火硬件上获得更好的解质量。我们应用机器学习方法来分析六个选定的约束优化问题的惩罚因素和最小谱间隙的相关性,并表明使用神经网络的回归允许在我们的设置中预测各种问题实例的最佳惩罚因素。此外,我们观察到,与具有多个全局最优的问题实例相比,具有单个全局最优的问题实例更容易优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信