Comparing Interpolations Using Standard and Normalized Radial Basis Functions

Zuzana Káčereková
{"title":"Comparing Interpolations Using Standard and Normalized Radial Basis Functions","authors":"Zuzana Káčereková","doi":"10.1109/Informatics57926.2022.10083406","DOIUrl":null,"url":null,"abstract":"Radial basis functions (RBFs) are commonly used in solving partial differential equations, interpolation and ap-proximation of scalar and vector data, image reconstruction, geographic information systems, and machine learning. In this contribution, the properties of interpolations using standard and normalized RBFs are compared, and the impact of an added polynomial term is analyzed using various samplings of input functions. Experimental results across a range of tested kernel functions and shape parameters are provided.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radial basis functions (RBFs) are commonly used in solving partial differential equations, interpolation and ap-proximation of scalar and vector data, image reconstruction, geographic information systems, and machine learning. In this contribution, the properties of interpolations using standard and normalized RBFs are compared, and the impact of an added polynomial term is analyzed using various samplings of input functions. Experimental results across a range of tested kernel functions and shape parameters are provided.
比较使用标准和标准化径向基函数的插值
径向基函数(rbf)通常用于求解偏微分方程、标量和矢量数据的插值和近似、图像重建、地理信息系统和机器学习。在这篇文章中,比较了使用标准rbf和归一化rbf的插值特性,并使用输入函数的不同采样分析了添加多项式项的影响。提供了一系列测试核函数和形状参数的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信