К. Панчук, K. Panchuk, Е. Любчинов, E. Lyubchinov, Т. Мясоедова, T. Myasoedova
{"title":"Computer Aided Geometric Modeling of Solutions to the Tasks of Applied Cyclography","authors":"К. Панчук, K. Panchuk, Е. Любчинов, E. Lyubchinov, Т. Мясоедова, T. Myasoedova","doi":"10.30987/graphicon-2019-2-185-188","DOIUrl":null,"url":null,"abstract":"In the present paper the solutions based on cyclographic method are considered on the example of two applied tasks: generation of road surface forms and pocket machining process engineering. Geometric structures based on cyclographic mapping of space E3 on plane E2 and the corresponding mathematical models in the form of systems of parametric equations are provided. On the basis of the developed models, analytical solutions to the problems of shaping the surface and linear forms of the studied objects in the areas of road design and surface treatment of mechanical engineering products were obtained. The models develop the authors’ previous research and are aimed at comprehensive solution to the problems of surface form generation in application to the two mentioned tasks.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-185-188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In the present paper the solutions based on cyclographic method are considered on the example of two applied tasks: generation of road surface forms and pocket machining process engineering. Geometric structures based on cyclographic mapping of space E3 on plane E2 and the corresponding mathematical models in the form of systems of parametric equations are provided. On the basis of the developed models, analytical solutions to the problems of shaping the surface and linear forms of the studied objects in the areas of road design and surface treatment of mechanical engineering products were obtained. The models develop the authors’ previous research and are aimed at comprehensive solution to the problems of surface form generation in application to the two mentioned tasks.