THE SET OF INCOMPLETE SUMS OF THE MODIFIED GUTHRIE-NYMANN SERIES

M. Pratsiovytyi, D. Karvatsky
{"title":"THE SET OF INCOMPLETE SUMS OF THE MODIFIED GUTHRIE-NYMANN SERIES","authors":"M. Pratsiovytyi, D. Karvatsky","doi":"10.31861/bmj2022.02.15","DOIUrl":null,"url":null,"abstract":"In this paper we study topological and metric properties of the set of incomplete sums for positive series $\\sum {a_k}$, where $a_{2n-1}=3/4^n+3/4^{in}$ and $a_{2n}=2/4^n+2/4^{in}$, $n \\in N$. The series depends on positive integer parameter $i \\geq 2$ and it is some perturbation of the known Guthrie-Nymann series. We prove that the set of incomplete sums of this series is a Cantorval (which is a specific union of a perfect nowhere dense set of zero Lebesgue measure and an infinite union of intervals), and its Lebesgue measure is given by formula: $\\lambda(X^+_i)=1+\\frac{1}{4^i-3}.$ The main idea of ??proving the theorem is based on the well-known Kakey theorem, the closedness of sets of incomplete sums of the series and the density of the set everywhere in a certain segment. The work provides a full justification of the facts for the case $i=2$. To justify the main facts, the ratio between the members and the remainders of the series is used. For $i=2$ we have $r_0=\\sum {a_k}=2$, $a_{2n}-r_{2n}= \\frac{1}{3} \\cdot \\frac{1}{4^n} + \\frac{5}{3} \\cdot \\frac{1}{16^n}$ $r_{2n-1}-a_{2n-1}= \\frac{2}{3} \\cdot \\frac{ 1}{4^n}-\\frac{2}{3} \\cdot \\frac{1}{16^n}$. The relevance of the study of the object is dictated by the problems of the geometry of numerical series, fractal analysis and fractal geometry of one-dimensional objects and the theory of infinite Bernoulli convolutions, one of the problems of which is the problem of the singularity of the convolution of two singular distributions.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.02.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study topological and metric properties of the set of incomplete sums for positive series $\sum {a_k}$, where $a_{2n-1}=3/4^n+3/4^{in}$ and $a_{2n}=2/4^n+2/4^{in}$, $n \in N$. The series depends on positive integer parameter $i \geq 2$ and it is some perturbation of the known Guthrie-Nymann series. We prove that the set of incomplete sums of this series is a Cantorval (which is a specific union of a perfect nowhere dense set of zero Lebesgue measure and an infinite union of intervals), and its Lebesgue measure is given by formula: $\lambda(X^+_i)=1+\frac{1}{4^i-3}.$ The main idea of ??proving the theorem is based on the well-known Kakey theorem, the closedness of sets of incomplete sums of the series and the density of the set everywhere in a certain segment. The work provides a full justification of the facts for the case $i=2$. To justify the main facts, the ratio between the members and the remainders of the series is used. For $i=2$ we have $r_0=\sum {a_k}=2$, $a_{2n}-r_{2n}= \frac{1}{3} \cdot \frac{1}{4^n} + \frac{5}{3} \cdot \frac{1}{16^n}$ $r_{2n-1}-a_{2n-1}= \frac{2}{3} \cdot \frac{ 1}{4^n}-\frac{2}{3} \cdot \frac{1}{16^n}$. The relevance of the study of the object is dictated by the problems of the geometry of numerical series, fractal analysis and fractal geometry of one-dimensional objects and the theory of infinite Bernoulli convolutions, one of the problems of which is the problem of the singularity of the convolution of two singular distributions.
修正guthrie-nymann级数的不完全和集
本文研究了正级数$\sum {a_k}$的不完全和集的拓扑和度量性质,其中$a_{2n-1}=3/4^n+3/4^{in}$和$a_{2n}=2/4^n+2/4^{in}$, $n \in N$。该级数依赖于正整数参数$i \geq 2$,它是已知Guthrie-Nymann级数的扰动。我们证明了这个级数的不完全和集是一个Cantorval(它是零勒贝格测度与区间的无限并集的完全无密集的特殊并集),它的勒贝格测度由公式给出:$\lambda(X^+_i)=1+\frac{1}{4^i-3}.$这个定理的证明是基于著名的卡基定理,级数的不完全和集合的封闭性以及集合在某一段上处处的密度。这项工作为案件的事实提供了充分的理由$i=2$。为了证明主要事实的合理性,使用了该系列的成员和剩余部分之间的比率。对于$i=2$,我们有$r_0=\sum {a_k}=2$$a_{2n}-r_{2n}= \frac{1}{3} \cdot \frac{1}{4^n} + \frac{5}{3} \cdot \frac{1}{16^n}$$r_{2n-1}-a_{2n-1}= \frac{2}{3} \cdot \frac{ 1}{4^n}-\frac{2}{3} \cdot \frac{1}{16^n}$。物体研究的相关性是由数值级数的几何问题、一维物体的分形分析和分形几何问题以及无限伯努利卷积理论决定的,其中一个问题是两个奇异分布卷积的奇异性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信