Mining Common Spatial-Temporal Periodic Patterns of Animal Movement

Yuwei Wang, Ze Luo, Gang Qin, Yuanchun Zhou, Danhuai Guo, Baoping Yan
{"title":"Mining Common Spatial-Temporal Periodic Patterns of Animal Movement","authors":"Yuwei Wang, Ze Luo, Gang Qin, Yuanchun Zhou, Danhuai Guo, Baoping Yan","doi":"10.1109/eScience.2013.11","DOIUrl":null,"url":null,"abstract":"Advanced satellite tracking technologies enable biologists to track animal movements at finer spatial and temporal scales. The resulting long-term movement data is very meaningful for understanding animal activities. Periodic pattern analysis can provide insightful approach to reveal animal activity patterns. However, individual GPS data is usually incomplete and in limited lifespan. In addition, individual periodic behaviors are inherently complicated with many uncertainties. In this paper, we address the problem of mining periodic patterns of animal movements by combining multiple individuals with similar periodicities. We formally define the problem of mining common periodicity and propose a novel periodicity measure. We introduce the information entropy in the proposed measure to detect common period. Data incompleteness, noises, and ambiguity of individual periodicity are considered in our method. Furthermore, we mine multiple common periodic patterns by grouping periodic segments w.r.t. the detected period, and provide a visualization method of common periodic patterns by designing a cyclical filled line chart. To assess effectiveness of our proposed method, we provide an experimental study using a real GPS dataset collected on 29 birds in Qinghai Lake, China.","PeriodicalId":325272,"journal":{"name":"2013 IEEE 9th International Conference on e-Science","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2013.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Advanced satellite tracking technologies enable biologists to track animal movements at finer spatial and temporal scales. The resulting long-term movement data is very meaningful for understanding animal activities. Periodic pattern analysis can provide insightful approach to reveal animal activity patterns. However, individual GPS data is usually incomplete and in limited lifespan. In addition, individual periodic behaviors are inherently complicated with many uncertainties. In this paper, we address the problem of mining periodic patterns of animal movements by combining multiple individuals with similar periodicities. We formally define the problem of mining common periodicity and propose a novel periodicity measure. We introduce the information entropy in the proposed measure to detect common period. Data incompleteness, noises, and ambiguity of individual periodicity are considered in our method. Furthermore, we mine multiple common periodic patterns by grouping periodic segments w.r.t. the detected period, and provide a visualization method of common periodic patterns by designing a cyclical filled line chart. To assess effectiveness of our proposed method, we provide an experimental study using a real GPS dataset collected on 29 birds in Qinghai Lake, China.
挖掘动物运动的共同时空周期模式
先进的卫星跟踪技术使生物学家能够在更精细的空间和时间尺度上跟踪动物的运动。由此产生的长期运动数据对了解动物活动非常有意义。周期性模式分析可以提供深刻的方法来揭示动物的活动模式。然而,单个GPS数据通常是不完整的,而且使用寿命有限。此外,单个周期行为本身就具有许多不确定性。在本文中,我们通过结合具有相似周期的多个个体来解决挖掘动物运动周期模式的问题。我们正式定义了公共周期的挖掘问题,并提出了一种新的周期测度。我们在该方法中引入了信息熵来检测共同周期。该方法考虑了数据的不完全性、噪声和单个周期的模糊性。在此基础上,通过对检测到的周期分段进行分组,挖掘出多个常见的周期模式,并通过设计周期填充折线图,提供了一种常见周期模式的可视化方法。为了验证该方法的有效性,我们利用青海湖29只鸟类的真实GPS数据进行了实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信