Privacy protection data mining algorithm in blockchain based on decision tree classification

Web Intell. Pub Date : 2022-06-09 DOI:10.3233/web-210485
Yu Cao, Wei Wei, Jingcheng Zhou
{"title":"Privacy protection data mining algorithm in blockchain based on decision tree classification","authors":"Yu Cao, Wei Wei, Jingcheng Zhou","doi":"10.3233/web-210485","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of low mining accuracy and high privacy protection data noise in privacy protection data mining methods in blockchain, a privacy protection data mining algorithm in blockchain based on decision tree classification is proposed. Extract the privacy protection data in the blockchain, calculate and update the distance between the data in the data set to be denoised, and denoise the updated data. Finally, starting from the root of the decision tree, calculate the information gain value of this part of privacy protection data, determine the attribute probability of privacy protection data, and complete the in-depth mining of privacy protection data in the blockchain through the calculation of decision leaf density value. The experimental results show that the mining accuracy of the proposed algorithm is always more than 90%, and the data noise is stable below 0.6 dB.","PeriodicalId":245783,"journal":{"name":"Web Intell.","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-210485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the problems of low mining accuracy and high privacy protection data noise in privacy protection data mining methods in blockchain, a privacy protection data mining algorithm in blockchain based on decision tree classification is proposed. Extract the privacy protection data in the blockchain, calculate and update the distance between the data in the data set to be denoised, and denoise the updated data. Finally, starting from the root of the decision tree, calculate the information gain value of this part of privacy protection data, determine the attribute probability of privacy protection data, and complete the in-depth mining of privacy protection data in the blockchain through the calculation of decision leaf density value. The experimental results show that the mining accuracy of the proposed algorithm is always more than 90%, and the data noise is stable below 0.6 dB.
基于决策树分类的区块链隐私保护数据挖掘算法
针对区块链中隐私保护数据挖掘方法挖掘精度低、隐私保护数据噪声高的问题,提出了一种基于决策树分类的区块链中隐私保护数据挖掘算法。提取区块链中的隐私保护数据,计算并更新待去噪数据集中数据之间的距离,对更新后的数据进行去噪。最后,从决策树的根开始,计算这部分隐私保护数据的信息增益值,确定隐私保护数据的属性概率,通过计算决策叶密度值,完成区块链中隐私保护数据的深度挖掘。实验结果表明,该算法的挖掘精度始终在90%以上,数据噪声稳定在0.6 dB以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信