{"title":"Integrating Bi-Dynamic Routing Capsule Network with Label-Constraint for Text classification","authors":"Xiang Guo, Youquan Wang, Kaiyuan Gao, Jie Cao, Haicheng Tao, Chaoyue Chen","doi":"10.1109/ICBK50248.2020.00011","DOIUrl":null,"url":null,"abstract":"Neural-based text classification methods have attracted increasing attention in recent years. Unlike the standard text classification methods, neural-based text classification methods perform the representation operation and end-to-end learning on the text data. Many useful insights can be derived from neural based text classifiers as demonstrated by an ever-growing body of work focused on text mining. However, in the real-world, text can be both complex and noisy which can pose a problem for effective text classification. An effective way to deal with this issue is to incorporate self-attention and capsule networks into text mining solutions. In this paper, we propose a Bi-dynamic routing Capsule Network with Label-constraint (BCNL) model for text classification, which moves beyond the limitations of previous methods by automatically learning the task-relevant and label-relevant words of text. Specifically, we use a Bi-LSTM and self-attention with position encoder network to learn text embeddings. Meanwhile, we propose a bi-dynamic routing capsule network with label-constraint to adjust the category distribute of text capsules. Through extensive experiments on four datasets, we observe that our method outperforms state-of-the-art baseline methods.","PeriodicalId":432857,"journal":{"name":"2020 IEEE International Conference on Knowledge Graph (ICKG)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Knowledge Graph (ICKG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK50248.2020.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neural-based text classification methods have attracted increasing attention in recent years. Unlike the standard text classification methods, neural-based text classification methods perform the representation operation and end-to-end learning on the text data. Many useful insights can be derived from neural based text classifiers as demonstrated by an ever-growing body of work focused on text mining. However, in the real-world, text can be both complex and noisy which can pose a problem for effective text classification. An effective way to deal with this issue is to incorporate self-attention and capsule networks into text mining solutions. In this paper, we propose a Bi-dynamic routing Capsule Network with Label-constraint (BCNL) model for text classification, which moves beyond the limitations of previous methods by automatically learning the task-relevant and label-relevant words of text. Specifically, we use a Bi-LSTM and self-attention with position encoder network to learn text embeddings. Meanwhile, we propose a bi-dynamic routing capsule network with label-constraint to adjust the category distribute of text capsules. Through extensive experiments on four datasets, we observe that our method outperforms state-of-the-art baseline methods.