Enhanced Semi-Supervised Learning for Automatic Video Annotation

Meng Wang, Xiansheng Hua, Lirong Dai, Yan Song
{"title":"Enhanced Semi-Supervised Learning for Automatic Video Annotation","authors":"Meng Wang, Xiansheng Hua, Lirong Dai, Yan Song","doi":"10.1109/ICME.2006.262823","DOIUrl":null,"url":null,"abstract":"For automatic semantic annotation of large-scale video database, the insufficiency of labeled training samples is a major obstacle. General semi-supervised learning algorithms can help solve the problem but the improvement is limited. In this paper, two semi-supervised learning algorithms, self-training and co-training, are enhanced by exploring the temporal consistency of semantic concepts in video sequences. In the enhanced algorithms, instead of individual shots, time-constraint shot clusters are taken as the basic sample units, in which most mis-classifications can be corrected before they are applied for re-training, thus more accurate statistical models can be obtained. Experiments show that enhanced self-training/co-training significantly improves the performance of video annotation","PeriodicalId":339258,"journal":{"name":"2006 IEEE International Conference on Multimedia and Expo","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2006.262823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

For automatic semantic annotation of large-scale video database, the insufficiency of labeled training samples is a major obstacle. General semi-supervised learning algorithms can help solve the problem but the improvement is limited. In this paper, two semi-supervised learning algorithms, self-training and co-training, are enhanced by exploring the temporal consistency of semantic concepts in video sequences. In the enhanced algorithms, instead of individual shots, time-constraint shot clusters are taken as the basic sample units, in which most mis-classifications can be corrected before they are applied for re-training, thus more accurate statistical models can be obtained. Experiments show that enhanced self-training/co-training significantly improves the performance of video annotation
用于自动视频注释的增强半监督学习
对于大规模视频数据库的自动语义标注,标记训练样本的不足是一个主要障碍。一般的半监督学习算法可以帮助解决这个问题,但改进是有限的。本文通过探索视频序列中语义概念的时间一致性,对自训练和协同训练两种半监督学习算法进行了改进。在增强算法中,以时间约束的投篮聚类代替单个投篮作为基本样本单位,可以在重新训练之前纠正大多数错误分类,从而获得更准确的统计模型。实验表明,增强的自训练/协同训练显著提高了视频标注的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信