Billion-Scale Matrix Compression and Multiplication with Implications in Data Mining

M. Nelson, S. Radhakrishnan, C. Sekharan
{"title":"Billion-Scale Matrix Compression and Multiplication with Implications in Data Mining","authors":"M. Nelson, S. Radhakrishnan, C. Sekharan","doi":"10.1109/IRI.2019.00067","DOIUrl":null,"url":null,"abstract":"Billion-scale Boolean matrices in the era of big data occupy storage that is measured in 100's of petabytes to zetabytes. The fundamental operation on these matrices for data mining involves multiplication which suffers a significant slow-down as the required data cannot fit in most main memories. In this paper, we propose new algorithms to perform Matrix-Vector and Matrix-Matrix operations directly on compressed Boolean matrices using innovative techniques extended from our previous work on compression. Our extension involves the development of a row-by-row differential compression technique which reduces the overall space requirement and the number of matrix operations. We have provided extensive empirical results on billion-scale Boolean matrices that are Boolean adjacency matrices of web graphs. Our work has significant implications on key problems such as page-ranking and itemset mining that use matrix multiplication.","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"IA-20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Billion-scale Boolean matrices in the era of big data occupy storage that is measured in 100's of petabytes to zetabytes. The fundamental operation on these matrices for data mining involves multiplication which suffers a significant slow-down as the required data cannot fit in most main memories. In this paper, we propose new algorithms to perform Matrix-Vector and Matrix-Matrix operations directly on compressed Boolean matrices using innovative techniques extended from our previous work on compression. Our extension involves the development of a row-by-row differential compression technique which reduces the overall space requirement and the number of matrix operations. We have provided extensive empirical results on billion-scale Boolean matrices that are Boolean adjacency matrices of web graphs. Our work has significant implications on key problems such as page-ranking and itemset mining that use matrix multiplication.
十亿尺度矩阵的压缩和乘法在数据挖掘中的应用
在大数据时代,十亿规模的布尔矩阵占用的存储空间以100pb到zetabytes为单位。对这些矩阵进行数据挖掘的基本操作包括乘法,由于所需的数据无法在大多数主存储器中存储,因此乘法的速度会大大降低。在本文中,我们提出了新的算法来执行矩阵-向量和矩阵-矩阵操作直接对压缩布尔矩阵使用创新的技术从我们以前的压缩工作扩展。我们的扩展涉及到一种逐行差分压缩技术的发展,它减少了总体空间需求和矩阵运算的数量。我们已经提供了大量关于十亿尺度布尔矩阵的经验结果,这些布尔矩阵是网络图的布尔邻接矩阵。我们的工作对使用矩阵乘法的页面排序和项目集挖掘等关键问题具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信