A fuzzy control strategy and optimization for four wheel steering system

Jie Zhang, Yunqing Zhang, Liping Chen, Jingzhou Yang
{"title":"A fuzzy control strategy and optimization for four wheel steering system","authors":"Jie Zhang, Yunqing Zhang, Liping Chen, Jingzhou Yang","doi":"10.1109/ICVES.2007.4456359","DOIUrl":null,"url":null,"abstract":"This paper presents a fuzzy logic control strategy on four-wheel steering(4WS) vehicle based on a multi-body vehicle dynamic model. The multi-body vehicle dynamic model based on ADAMS can accurately predict the dynamics performance of the vehicle. Fuzzy logic is applied to track the yaw velocity of the two degrees of freedom ideal model through the co-simulation of ADAMS and Matlab Fuzzy control unit with the optimized membership function. The fuzzy control parameters are optimized and analyzed by a combined optimization algorithm (Genetic Algorithm (GA) and Nonlinear Programming Quadratic Line search (NLPQL) method) combined with response surface model (RSM). Single lane change test is chosen to validate the fuzzy control logic strategy. Simulation result shows that four-wheel steering vehicle with the fuzzy control logic strategy can improve vehicle handling stability greatly comparing with traditional front wheel steering.","PeriodicalId":202772,"journal":{"name":"2007 IEEE International Conference on Vehicular Electronics and Safety","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2007.4456359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper presents a fuzzy logic control strategy on four-wheel steering(4WS) vehicle based on a multi-body vehicle dynamic model. The multi-body vehicle dynamic model based on ADAMS can accurately predict the dynamics performance of the vehicle. Fuzzy logic is applied to track the yaw velocity of the two degrees of freedom ideal model through the co-simulation of ADAMS and Matlab Fuzzy control unit with the optimized membership function. The fuzzy control parameters are optimized and analyzed by a combined optimization algorithm (Genetic Algorithm (GA) and Nonlinear Programming Quadratic Line search (NLPQL) method) combined with response surface model (RSM). Single lane change test is chosen to validate the fuzzy control logic strategy. Simulation result shows that four-wheel steering vehicle with the fuzzy control logic strategy can improve vehicle handling stability greatly comparing with traditional front wheel steering.
四轮转向系统的模糊控制策略及优化
提出了一种基于多体车辆动力学模型的四轮转向车辆模糊控制策略。基于ADAMS的多体车辆动力学模型能够准确预测车辆的动力学性能。通过ADAMS和Matlab模糊控制单元的联合仿真,利用优化的隶属函数,应用模糊逻辑对两自由度理想模型的横摆速度进行跟踪。采用遗传算法(GA)和非线性规划二次线搜索法(NLPQL)结合响应面模型(RSM)对模糊控制参数进行了优化和分析。选择单变道试验来验证模糊控制逻辑策略。仿真结果表明,与传统的前轮转向相比,采用模糊控制逻辑策略的四轮转向车辆可以大大提高车辆的操纵稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信