{"title":"Genesis of Structure and Properties of the Zeolite-Like Cement Matrices of the System Na(K)-Al2O3-SiO2-H2O within a Temperature Range of 20–1200°C","authors":"P. Krivenko, V. Kyrychok","doi":"10.5772/INTECHOPEN.97520","DOIUrl":null,"url":null,"abstract":"The chapter deals with a genesis of structure and properties of the zeolite-like cement matrices of the Na(K)-Al2O3-SiO2-H2O system within a temperature range of 20–1200°С. Due to the fact that zeolite-like structures and their characteristics vary within wide ranges, materials with high-performance properties can be obtained through regulation of the structure formation processes. This can be provided by a proper choice of type of an aluminosilicate component, cation of an alkaline component and additives, including Ca-containing ones, and curing conditions. When the cement matrix formation process is appropriately directed, the zeolite-like products (hydrosodalite, analcime, chabasite, faujasite etc.) dominate in the microstructure that is formed. The ability of some zeolites to recrystallize with temperature increase into stable feldspar-like aluminosilicates without destroying the basic skeleton opens a pathway that is worth to explore in the production of materials similar to low temperature ceramics, intumescent coatings, high temperature and corrosion resistant structures, etc. The examples are given on how to use the above cement matrices for making some of the above listed materials.","PeriodicalId":420848,"journal":{"name":"Advances in Geopolymers Synthesis and Characterization [Working Title]","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geopolymers Synthesis and Characterization [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.97520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The chapter deals with a genesis of structure and properties of the zeolite-like cement matrices of the Na(K)-Al2O3-SiO2-H2O system within a temperature range of 20–1200°С. Due to the fact that zeolite-like structures and their characteristics vary within wide ranges, materials with high-performance properties can be obtained through regulation of the structure formation processes. This can be provided by a proper choice of type of an aluminosilicate component, cation of an alkaline component and additives, including Ca-containing ones, and curing conditions. When the cement matrix formation process is appropriately directed, the zeolite-like products (hydrosodalite, analcime, chabasite, faujasite etc.) dominate in the microstructure that is formed. The ability of some zeolites to recrystallize with temperature increase into stable feldspar-like aluminosilicates without destroying the basic skeleton opens a pathway that is worth to explore in the production of materials similar to low temperature ceramics, intumescent coatings, high temperature and corrosion resistant structures, etc. The examples are given on how to use the above cement matrices for making some of the above listed materials.