{"title":"Hardware Prediction for Data Coherency of Scientific Codes on DSM","authors":"Jean-Thomas Acquaviva, W. Jalby","doi":"10.1109/SC.2000.10037","DOIUrl":null,"url":null,"abstract":"This paper proposes a hardware mechanism for reducing coherency overhead occurring in scientific computations within DSM systems. A first phase aims at detecting, in the address space regular patterns (called streams) of coherency events (such as requests for exclusive, shared or invalidation). Once a stream is detected at a loop level, regularity of data access can be exploited at the loop level (spatial locality) but also between loops (temporal locality). We present a hardware mechanism capable of detecting and exploiting efficiently these regular patterns. Expectable benefits as well as hardware complexity are discussed and the limited drawbacks and potential over-heads are exposed. For a benchmarks suite of typical scientific applications results are very promising both in terms of coherency streams and the effectiveness of our optimizations.","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes a hardware mechanism for reducing coherency overhead occurring in scientific computations within DSM systems. A first phase aims at detecting, in the address space regular patterns (called streams) of coherency events (such as requests for exclusive, shared or invalidation). Once a stream is detected at a loop level, regularity of data access can be exploited at the loop level (spatial locality) but also between loops (temporal locality). We present a hardware mechanism capable of detecting and exploiting efficiently these regular patterns. Expectable benefits as well as hardware complexity are discussed and the limited drawbacks and potential over-heads are exposed. For a benchmarks suite of typical scientific applications results are very promising both in terms of coherency streams and the effectiveness of our optimizations.