Similarity measure learning for image retrieval using feature subspace analysis

Hangjun Ye, Guangyou Xu
{"title":"Similarity measure learning for image retrieval using feature subspace analysis","authors":"Hangjun Ye, Guangyou Xu","doi":"10.1109/ICCIMA.2003.1238113","DOIUrl":null,"url":null,"abstract":"Practical content-based image retrieval systems require efficient relevance feedback techniques. Researchers have proposed many relevance feedback methods using quadratic-form distance metric as similarity measure and learning similarity matrix by feedback samples. Existing methods fail to find the optimal and reasonable solution of similarity measure due to the small number of positive and negative training samples. In this paper, an approach of learning the similarity measure using feature subspaces analysis (FSA) is proposed for content-based image retrieval. This approach solves the similarity measure-learning problem by FSA on training samples, which improves generalization capacity and reserves robustness furthest simultaneously. Experiments on a large database of 13,897 heterogeneous images demonstrated a remarkable improvement of retrieval precision.","PeriodicalId":385362,"journal":{"name":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2003.1238113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Practical content-based image retrieval systems require efficient relevance feedback techniques. Researchers have proposed many relevance feedback methods using quadratic-form distance metric as similarity measure and learning similarity matrix by feedback samples. Existing methods fail to find the optimal and reasonable solution of similarity measure due to the small number of positive and negative training samples. In this paper, an approach of learning the similarity measure using feature subspaces analysis (FSA) is proposed for content-based image retrieval. This approach solves the similarity measure-learning problem by FSA on training samples, which improves generalization capacity and reserves robustness furthest simultaneously. Experiments on a large database of 13,897 heterogeneous images demonstrated a remarkable improvement of retrieval precision.
基于特征子空间分析的图像检索相似性度量学习
实用的基于内容的图像检索系统需要有效的相关反馈技术。研究者们提出了许多相关反馈方法,以二次形式的距离度量作为相似度量,并通过反馈样本学习相似矩阵。现有方法由于正负训练样本较少,无法找到最优合理的相似度度量解。针对基于内容的图像检索,提出了一种基于特征子空间分析的相似性度量学习方法。该方法解决了FSA在训练样本上的相似性度量学习问题,在最大程度上提高了泛化能力的同时保留了鲁棒性。在包含13897张异构图像的大型数据库上进行的实验表明,该方法显著提高了检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信