Nonparametric discovery of human routines from sensor data

Feng-Tso Sun, Yi-Ting Yeh, Heng-Tze Cheng, Cynthia Kuo, M. Griss
{"title":"Nonparametric discovery of human routines from sensor data","authors":"Feng-Tso Sun, Yi-Ting Yeh, Heng-Tze Cheng, Cynthia Kuo, M. Griss","doi":"10.1109/PerCom.2014.6813938","DOIUrl":null,"url":null,"abstract":"People engage in routine behaviors. Automatic routine discovery goes beyond low-level activity recognition such as sitting or standing and analyzes human behaviors at a higher level (e.g., commuting to work). With recent developments in ubiquitous sensor technologies, it becomes easier to acquire a massive amount of sensor data. One main line of research is to mine human routines from sensor data using parametric topic models such as latent Dirichlet allocation. The main shortcoming of parametric models is that it assumes a fixed, pre-specified parameter regardless of the data. Choosing an appropriate parameter usually requires an inefficient trial-and-error model selection process. Furthermore, it is even more difficult to find optimal parameter values in advance for personalized applications. In this paper, we present a novel nonparametric framework for human routine discovery that can infer high-level routines without knowing the number of latent topics beforehand. Our approach is evaluated on public datasets in two routine domains: a 34-daily-activity dataset and a transportation mode dataset. Experimental results show that our nonparametric framework can automatically learn the appropriate model parameters from sensor data without any form of model selection procedure and can outperform traditional parametric approaches for human routine discovery tasks.","PeriodicalId":263520,"journal":{"name":"2014 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PerCom.2014.6813938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

People engage in routine behaviors. Automatic routine discovery goes beyond low-level activity recognition such as sitting or standing and analyzes human behaviors at a higher level (e.g., commuting to work). With recent developments in ubiquitous sensor technologies, it becomes easier to acquire a massive amount of sensor data. One main line of research is to mine human routines from sensor data using parametric topic models such as latent Dirichlet allocation. The main shortcoming of parametric models is that it assumes a fixed, pre-specified parameter regardless of the data. Choosing an appropriate parameter usually requires an inefficient trial-and-error model selection process. Furthermore, it is even more difficult to find optimal parameter values in advance for personalized applications. In this paper, we present a novel nonparametric framework for human routine discovery that can infer high-level routines without knowing the number of latent topics beforehand. Our approach is evaluated on public datasets in two routine domains: a 34-daily-activity dataset and a transportation mode dataset. Experimental results show that our nonparametric framework can automatically learn the appropriate model parameters from sensor data without any form of model selection procedure and can outperform traditional parametric approaches for human routine discovery tasks.
从传感器数据中非参数地发现人类的日常行为
人们从事日常行为。自动日常发现超越了坐或站等低级活动识别,并在更高层次上分析人类行为(例如,上下班)。随着近年来无处不在的传感器技术的发展,获取大量传感器数据变得更加容易。一个主要的研究方向是利用参数主题模型(如潜在狄利克雷分配)从传感器数据中挖掘人类的日常行为。参数模型的主要缺点是,它假设一个固定的、预先指定的参数,而不管数据是什么。选择合适的参数通常需要一个低效的试错模型选择过程。此外,对于个性化应用,提前找到最优参数值更加困难。在本文中,我们提出了一种新的非参数框架,它可以在不知道潜在主题数量的情况下推断出高级例程。我们的方法在两个常规领域的公共数据集上进行了评估:一个34个日常活动数据集和一个运输模式数据集。实验结果表明,我们的非参数框架可以从传感器数据中自动学习合适的模型参数,而无需任何形式的模型选择过程,并且在人类日常发现任务中优于传统的参数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信