Contracts under Moral Hazard and Adverse Selection

Guru Guruganesh, Jon Schneider, Joshua R. Wang
{"title":"Contracts under Moral Hazard and Adverse Selection","authors":"Guru Guruganesh, Jon Schneider, Joshua R. Wang","doi":"10.1145/3465456.3467637","DOIUrl":null,"url":null,"abstract":"In the classical principal-agent problem, a principal must design a contract to incentivize an agent to perform an action on behalf of the principal. We study the classical principal-agent problem in a setting where the agent can be of one of several types (affecting the outcome of actions they might take). This combines the contract theory phenomena of \"moral hazard\" (incomplete information about actions) with that of \"adverse selection\" (incomplete information about types). We examine this problem through the computational lens. We show that in this setting it is APX-hard to compute either the profit-maximizing single contract or the profit-maximizing menu of contracts (as opposed to in the absence of types, where one can efficiently compute the optimal contract). We then show that the performance of the best linear contract scales especially well in the number of types: if agent has n available actions and T possible types, the best linear contract achieves an O(n log T) approximation of the best possible profit. Finally, we apply our framework to prove tight worst-case approximation bounds between a variety of benchmarks of mechanisms for the principal.","PeriodicalId":395676,"journal":{"name":"Proceedings of the 22nd ACM Conference on Economics and Computation","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465456.3467637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In the classical principal-agent problem, a principal must design a contract to incentivize an agent to perform an action on behalf of the principal. We study the classical principal-agent problem in a setting where the agent can be of one of several types (affecting the outcome of actions they might take). This combines the contract theory phenomena of "moral hazard" (incomplete information about actions) with that of "adverse selection" (incomplete information about types). We examine this problem through the computational lens. We show that in this setting it is APX-hard to compute either the profit-maximizing single contract or the profit-maximizing menu of contracts (as opposed to in the absence of types, where one can efficiently compute the optimal contract). We then show that the performance of the best linear contract scales especially well in the number of types: if agent has n available actions and T possible types, the best linear contract achieves an O(n log T) approximation of the best possible profit. Finally, we apply our framework to prove tight worst-case approximation bounds between a variety of benchmarks of mechanisms for the principal.
道德风险与逆向选择下的契约
在经典的委托代理问题中,委托人必须设计一个契约来激励代理人代表委托人执行一项行动。我们研究了经典的委托代理问题,其中代理可以是几种类型之一(影响他们可能采取的行动的结果)。这结合了契约理论中的“道德风险”现象(关于行为的不完全信息)和“逆向选择”现象(关于类型的不完全信息)。我们从计算的角度来研究这个问题。我们表明,在这种情况下,计算利润最大化的单个合约或利润最大化的合约菜单都是APX-hard(与没有类型的情况相反,在没有类型的情况下,人们可以有效地计算最优合约)。然后,我们证明了最佳线性契约的性能在类型数量上表现得特别好:如果代理有n个可用动作和T种可能的类型,那么最佳线性契约实现了最佳可能利润的O(n log T)近似。最后,我们应用我们的框架来证明委托人的各种基准机制之间的严格最坏情况近似界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信