Evaluating Restricted First-Order Counting Properties on Nowhere Dense Classes and Beyond

Jannik Dreier, Daniel Mock, P. Rossmanith
{"title":"Evaluating Restricted First-Order Counting Properties on Nowhere Dense Classes and Beyond","authors":"Jannik Dreier, Daniel Mock, P. Rossmanith","doi":"10.48550/arXiv.2307.01832","DOIUrl":null,"url":null,"abstract":"It is known that first-order logic with some counting extensions can be efficiently evaluated on graph classes with bounded expansion, where depth-$r$ minors have constant density. More precisely, the formulas are $\\exists x_1 ... x_k \\#y \\varphi(x_1,...,x_k, y)>N$, where $\\varphi$ is an FO-formula. If $\\varphi$ is quantifier-free, we can extend this result to nowhere dense graph classes with an almost linear FPT run time. Lifting this result further to slightly more general graph classes, namely almost nowhere dense classes, where the size of depth-$r$ clique minors is subpolynomial, is impossible unless FPT=W[1]. On the other hand, in almost nowhere dense classes we can approximate such counting formulas with a small additive error. Note those counting formulas are contained in FOC({<}) but not FOC1(P). In particular, it follows that partial covering problems, such as partial dominating set, have fixed parameter algorithms on nowhere dense graph classes with almost linear running time.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.01832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that first-order logic with some counting extensions can be efficiently evaluated on graph classes with bounded expansion, where depth-$r$ minors have constant density. More precisely, the formulas are $\exists x_1 ... x_k \#y \varphi(x_1,...,x_k, y)>N$, where $\varphi$ is an FO-formula. If $\varphi$ is quantifier-free, we can extend this result to nowhere dense graph classes with an almost linear FPT run time. Lifting this result further to slightly more general graph classes, namely almost nowhere dense classes, where the size of depth-$r$ clique minors is subpolynomial, is impossible unless FPT=W[1]. On the other hand, in almost nowhere dense classes we can approximate such counting formulas with a small additive error. Note those counting formulas are contained in FOC({<}) but not FOC1(P). In particular, it follows that partial covering problems, such as partial dominating set, have fixed parameter algorithms on nowhere dense graph classes with almost linear running time.
评价无处密集类及其他类上的受限一阶计数性质
已知具有一些计数扩展的一阶逻辑可以有效地在具有有界展开的图类上求值,其中depth- $r$次元具有恒定密度。更准确地说,公式是$\exists x_1 ... x_k \#y \varphi(x_1,...,x_k, y)>N$,其中$\varphi$是fo公式。如果$\varphi$没有量化符,我们可以将这个结果扩展到几乎是线性FPT运行时的任何密集图类。将这个结果进一步提升到稍微更一般的图类,即几乎无处密集的类,其中深度- $r$ clique minor的大小是次多项式,除非FPT=W[1],否则是不可能的。另一方面,在几乎任何密集的类中,我们都可以用一个小的加性误差近似这样的计数公式。请注意,这些计数公式包含在FOC{(<)}中,而不包含在FOC1(P)中。特别地,它得出部分覆盖问题,如部分支配集,在几乎线性运行的无处密集图类上具有固定参数算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信