œ-Boids Consensus Algorithm using Adaptive Flocking Model

M. Gulzar, Muhammad Munawar, Javaria Khalil, Daud Sibtain, Adeel Ahmed
{"title":"œ-Boids Consensus Algorithm using Adaptive Flocking Model","authors":"M. Gulzar, Muhammad Munawar, Javaria Khalil, Daud Sibtain, Adeel Ahmed","doi":"10.1109/ICCIS54243.2021.9676404","DOIUrl":null,"url":null,"abstract":"Multi-agent flocking means to achieve some common group objectives by interacting with each other. In this paper, an adaptive flocking model is implemented to achieve the consensus of multi-agents. By using this model, consensus can be implemented by randomly choosing the initial positions and velocities of the agents. Moreover, by using different graph topologies, the simulation results for 7 agents (N= 7) are demonstrated to ensure the convergence of the agent's average velocity, positions and directions at different iterations.","PeriodicalId":165673,"journal":{"name":"2021 4th International Conference on Computing & Information Sciences (ICCIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Computing & Information Sciences (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS54243.2021.9676404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Multi-agent flocking means to achieve some common group objectives by interacting with each other. In this paper, an adaptive flocking model is implemented to achieve the consensus of multi-agents. By using this model, consensus can be implemented by randomly choosing the initial positions and velocities of the agents. Moreover, by using different graph topologies, the simulation results for 7 agents (N= 7) are demonstrated to ensure the convergence of the agent's average velocity, positions and directions at different iterations.
œ-Boids基于自适应群集模型的共识算法
多智能体群集是指通过相互作用来实现一些共同的群体目标。本文采用自适应群集模型实现多智能体的一致性。利用该模型,可以通过随机选择agent的初始位置和速度来实现共识。此外,通过使用不同的图拓扑,对7个agent (N= 7)的仿真结果进行了演示,以保证agent在不同迭代时的平均速度、位置和方向的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信