Relative size of certain polynomial time solvable subclasses of satisfiability

J. Franco
{"title":"Relative size of certain polynomial time solvable subclasses of satisfiability","authors":"J. Franco","doi":"10.1090/dimacs/035/04","DOIUrl":null,"url":null,"abstract":"Abstract : We determine, according to a certain measure, the relative sizes of several well known polynomially solvable subclasses of SAT. The measure we adopt is the probability that randomly selected k-SAT formulas belong to the subclass of formulas in question. This probability is a function of the ratio r of clauses to variables and we determine those ranges of this ratio that result in membership with high probability. We show, for any fixed r > 4/(k(k - 1)), the probability that a random formula is SLUR, q-Horn, extended Horn, CC-balanced, or renamable Horn tends to 0 as n approaches infinity. We also show that most random unsatisfiable formulas are not members of one of these subclasses.","PeriodicalId":434373,"journal":{"name":"Satisfiability Problem: Theory and Applications","volume":"AES-21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Satisfiability Problem: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/035/04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Abstract : We determine, according to a certain measure, the relative sizes of several well known polynomially solvable subclasses of SAT. The measure we adopt is the probability that randomly selected k-SAT formulas belong to the subclass of formulas in question. This probability is a function of the ratio r of clauses to variables and we determine those ranges of this ratio that result in membership with high probability. We show, for any fixed r > 4/(k(k - 1)), the probability that a random formula is SLUR, q-Horn, extended Horn, CC-balanced, or renamable Horn tends to 0 as n approaches infinity. We also show that most random unsatisfiable formulas are not members of one of these subclasses.
某些多项式时间可解的可满足子类的相对大小
摘要:我们根据一定的度量来确定几个已知的SAT多项式可解子类的相对大小。我们采用的度量是随机选择的k-SAT公式属于所讨论的公式子类的概率。这个概率是子句与变量之比r的函数,我们确定这个比值的范围,从而产生高概率的隶属关系。我们证明,对于任何固定的r > 4/(k(k - 1)),随机公式是SLUR、q-Horn、扩展Horn、CC-balanced或可重命名Horn的概率在n趋于无穷时趋于0。我们还证明了大多数随机的不满足公式不是这些子类之一的成员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信