Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator

Sepideh Seifzadeh, Mohammad Rostami, A. Ghodsi, F. Karray
{"title":"Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator","authors":"Sepideh Seifzadeh, Mohammad Rostami, A. Ghodsi, F. Karray","doi":"10.1109/IJCNN.2011.6033577","DOIUrl":null,"url":null,"abstract":"A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.
基于Stein无偏风险估计的光滑样条参数选择
光滑样条回归中一个具有挑战性的问题是确定光滑参数的值。参数建立了数据的紧密性与回归函数的平滑性之间的权衡。提出了一种基于Stein's无偏风险估计(SURE)的最优平滑值求解方法。该方法采用牛顿法直接求解最优值,同时使回归的真实误差最小。实验结果证明了该方法的有效性,特别是对于小数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信