DWReCO at CheckThat! 2023: Enhancing Subjectivity Detection through Style-based Data Sampling

Ipek Baris Schlicht, Lynn Khellaf, Defne Altiok
{"title":"DWReCO at CheckThat! 2023: Enhancing Subjectivity Detection through Style-based Data Sampling","authors":"Ipek Baris Schlicht, Lynn Khellaf, Defne Altiok","doi":"10.48550/arXiv.2307.03550","DOIUrl":null,"url":null,"abstract":"This paper describes our submission for the subjectivity detection task at the CheckThat! Lab. To tackle class imbalances in the task, we have generated additional training materials with GPT-3 models using prompts of different styles from a subjectivity checklist based on journalistic perspective. We used the extended training set to fine-tune language-specific transformer models. Our experiments in English, German and Turkish demonstrate that different subjective styles are effective across all languages. In addition, we observe that the style-based oversampling is better than paraphrasing in Turkish and English. Lastly, the GPT-3 models sometimes produce lacklustre results when generating style-based texts in non-English languages.","PeriodicalId":232729,"journal":{"name":"Conference and Labs of the Evaluation Forum","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference and Labs of the Evaluation Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.03550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes our submission for the subjectivity detection task at the CheckThat! Lab. To tackle class imbalances in the task, we have generated additional training materials with GPT-3 models using prompts of different styles from a subjectivity checklist based on journalistic perspective. We used the extended training set to fine-tune language-specific transformer models. Our experiments in English, German and Turkish demonstrate that different subjective styles are effective across all languages. In addition, we observe that the style-based oversampling is better than paraphrasing in Turkish and English. Lastly, the GPT-3 models sometimes produce lacklustre results when generating style-based texts in non-English languages.
在CheckThat上玩完!2023:通过基于风格的数据采样增强主观性检测
本文描述了我们在CheckThat!实验室。为了解决任务中的阶级不平衡,我们用GPT-3模型生成了额外的培训材料,使用了基于新闻视角的主观性检查表中不同风格的提示。我们使用扩展的训练集来微调特定于语言的转换器模型。我们对英语、德语和土耳其语的实验表明,不同的主观风格在所有语言中都是有效的。此外,我们观察到基于风格的过采样优于土耳其语和英语的释义。最后,GPT-3模型在生成非英语语言的基于风格的文本时,有时会产生平淡无奇的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信