Chinese Position Segmentation Based on ALBERT- BiGRU-CRF Model

Xiaolin Li, QingKang Deng
{"title":"Chinese Position Segmentation Based on ALBERT- BiGRU-CRF Model","authors":"Xiaolin Li, QingKang Deng","doi":"10.1109/ISCTIS51085.2021.00031","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of poor parsing effect and poor generalization ability in Chinese position segmentation using current neural network models, this paper proposes a Chinese position segmentation method based on ALBERT-BiGRU-CRF model. The method first uses the ALBERT pre-training model to pre-train the Chinese location information to obtain the context information in all layers, enhance the semantic representation ability of the Chinese location information, and then extract the feature information of the vector through the BiLSTM model, and finally decode it through the CRF model to obtain the global Optimal labeling sequence. Experimental results show that on the basis of different numbers and regions of Chinese location information data sets, the ALBERT-BiGRU-CRF model has better word segmentation accuracy and F1 value on all test sets than the current commonly used neural network models, and the highest can be achieved. 93.91% and 93.96%. Using the ALBERT-BiGRU-CRF model to segment Chinese location information not only effectively improves the accuracy of Chinese location information analysis and polysemous word analysis, but also has better generalization capabilities.","PeriodicalId":403102,"journal":{"name":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS51085.2021.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problems of poor parsing effect and poor generalization ability in Chinese position segmentation using current neural network models, this paper proposes a Chinese position segmentation method based on ALBERT-BiGRU-CRF model. The method first uses the ALBERT pre-training model to pre-train the Chinese location information to obtain the context information in all layers, enhance the semantic representation ability of the Chinese location information, and then extract the feature information of the vector through the BiLSTM model, and finally decode it through the CRF model to obtain the global Optimal labeling sequence. Experimental results show that on the basis of different numbers and regions of Chinese location information data sets, the ALBERT-BiGRU-CRF model has better word segmentation accuracy and F1 value on all test sets than the current commonly used neural network models, and the highest can be achieved. 93.91% and 93.96%. Using the ALBERT-BiGRU-CRF model to segment Chinese location information not only effectively improves the accuracy of Chinese location information analysis and polysemous word analysis, but also has better generalization capabilities.
基于ALBERT- BiGRU-CRF模型的中文位置分割
针对现有神经网络模型在中文位置分割中存在解析效果差、泛化能力差的问题,提出了一种基于ALBERT-BiGRU-CRF模型的中文位置分割方法。该方法首先利用ALBERT预训练模型对中文位置信息进行预训练,获取各层的上下文信息,增强中文位置信息的语义表示能力,然后通过BiLSTM模型提取向量的特征信息,最后通过CRF模型进行解码,得到全局最优标注序列。实验结果表明,基于不同数量和区域的中文位置信息数据集,ALBERT-BiGRU-CRF模型在所有测试集上的分词精度和F1值都优于目前常用的神经网络模型,且可达到最高。93.91%和93.96%。利用ALBERT-BiGRU-CRF模型对中文位置信息进行分割,不仅有效提高了中文位置信息分析和多义词分析的准确性,而且具有更好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信