Online event detection and tracking in social media based on neural similarity metric learning

Guandan Chen, Qingchao Kong, W. Mao
{"title":"Online event detection and tracking in social media based on neural similarity metric learning","authors":"Guandan Chen, Qingchao Kong, W. Mao","doi":"10.1109/ISI.2017.8004905","DOIUrl":null,"url":null,"abstract":"The ever-growing number of users makes social media a valuable information source about recent events. Event detection and tracking plays an important role in decision-making and public management. Despite recent progress, the performance of event detection and tracking is still limited. The majority of existing work lacks an effective way to judge whether a text related to a certain event, due to the limitations of semantic representation and heuristic similarity metric. In this paper, we present an online event detection and tracking method based on similarity metric learning using neural network. Our method first trains a classification model to identify event related texts. To detect and track events, we adopt a clustering-based approach. Specifically, we use neural network to jointly learn a similarity metric and low dimension representation of events, and then use a memory module to store and update event representation. Experiments on Twitter dataset show the effectiveness of our proposed method.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The ever-growing number of users makes social media a valuable information source about recent events. Event detection and tracking plays an important role in decision-making and public management. Despite recent progress, the performance of event detection and tracking is still limited. The majority of existing work lacks an effective way to judge whether a text related to a certain event, due to the limitations of semantic representation and heuristic similarity metric. In this paper, we present an online event detection and tracking method based on similarity metric learning using neural network. Our method first trains a classification model to identify event related texts. To detect and track events, we adopt a clustering-based approach. Specifically, we use neural network to jointly learn a similarity metric and low dimension representation of events, and then use a memory module to store and update event representation. Experiments on Twitter dataset show the effectiveness of our proposed method.
基于神经相似性度量学习的社交媒体在线事件检测与跟踪
不断增长的用户数量使社交媒体成为有关近期事件的宝贵信息来源。事件检测与跟踪在决策和公共管理中发挥着重要作用。尽管近年来取得了一些进展,但事件检测和跟踪的性能仍然有限。由于语义表示和启发式相似度度量的限制,大多数现有工作缺乏一种有效的方法来判断文本是否与某个事件相关。本文提出了一种基于神经网络相似性度量学习的在线事件检测与跟踪方法。我们的方法首先训练一个分类模型来识别事件相关的文本。为了检测和跟踪事件,我们采用了基于聚类的方法。具体来说,我们使用神经网络来共同学习事件的相似度度量和低维表示,然后使用内存模块来存储和更新事件表示。在Twitter数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信