Multi-GPU MapReduce on GPU Clusters

Jeff A. Stuart, John Douglas Owens
{"title":"Multi-GPU MapReduce on GPU Clusters","authors":"Jeff A. Stuart, John Douglas Owens","doi":"10.1109/IPDPS.2011.102","DOIUrl":null,"url":null,"abstract":"We present GPMR, our stand-alone MapReduce library that leverages the power of GPU clusters for large-scale computing. To better utilize the GPU, we modify MapReduce by combining large amounts of map and reduce items into chunks and using partial reductions and accumulation. We use persistent map and reduce tasks and stress aspects of GPMR with a set of standard MapReduce benchmarks. We run these benchmarks on a GPU cluster and achieve desirable speedup and efficiency for all benchmarks. We compare our implementation to the current-best GPU-MapReduce library (runs only on a solo GPU) and a highly-optimized multi-core MapReduce to show the power of GPMR. We demonstrate how typical MapReduce tasks are easily modified to fit into GPMR and leverage a GPU cluster. We highlight how total and relative amounts of communication affect GPMR. We conclude with an exposition on the types of MapReduce tasks well-suited to GPMR, and why some tasks need more modifications than others to work well with GPMR.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 217

Abstract

We present GPMR, our stand-alone MapReduce library that leverages the power of GPU clusters for large-scale computing. To better utilize the GPU, we modify MapReduce by combining large amounts of map and reduce items into chunks and using partial reductions and accumulation. We use persistent map and reduce tasks and stress aspects of GPMR with a set of standard MapReduce benchmarks. We run these benchmarks on a GPU cluster and achieve desirable speedup and efficiency for all benchmarks. We compare our implementation to the current-best GPU-MapReduce library (runs only on a solo GPU) and a highly-optimized multi-core MapReduce to show the power of GPMR. We demonstrate how typical MapReduce tasks are easily modified to fit into GPMR and leverage a GPU cluster. We highlight how total and relative amounts of communication affect GPMR. We conclude with an exposition on the types of MapReduce tasks well-suited to GPMR, and why some tasks need more modifications than others to work well with GPMR.
GPU集群上的多GPU MapReduce
我们展示了GPMR,我们的独立MapReduce库,它利用GPU集群的强大功能进行大规模计算。为了更好地利用GPU,我们通过将大量map和reduce项组合成块并使用部分约简和累积来修改MapReduce。我们通过一组标准的MapReduce基准来使用持久映射和减少GPMR的任务和压力方面。我们在GPU集群上运行这些基准测试,并为所有基准测试实现了理想的加速和效率。我们将我们的实现与当前最好的GPU-MapReduce库(仅在单个GPU上运行)和高度优化的多核MapReduce进行比较,以显示GPMR的强大功能。我们将演示如何轻松修改典型的MapReduce任务以适应GPMR并利用GPU集群。我们强调了通信总量和相对量如何影响GPMR。最后,我们阐述了适合GPMR的MapReduce任务类型,以及为什么有些任务需要更多的修改才能与GPMR很好地配合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信