{"title":"Using Bayesian Optimization With Knowledge Transfer for High Computational Cost Design: A Case Study in Photovoltaics","authors":"Mine Kaya, S. Hajimirza","doi":"10.1115/detc2019-98111","DOIUrl":null,"url":null,"abstract":"Engineering design is usually an iterative procedure where many different configurations are tested to yield a desirable end performance. When the design objective can only be measured by costly operations such as experiments or cumbersome computer simulations, a thorough design procedure can be limited. The design problem in these cases is a high cost optimization problem. Meta model-based approaches (e.g. Bayesian optimization) and transfer optimization are methods that can be used to facilitate more efficient designs. Transfer optimization is a technique that enables using previous design knowledge instead of starting from scratch in a new task. In this work, we study a transfer optimization framework based on Bayesian optimization using Gaussian Processes. The similarity among the tasks is determined via a similarity metric. The framework is applied to a particular design problem of thin film solar cells. Planar multilayer solar cells with different sets of materials are optimized to obtain the best opto-electrical efficiency. Solar cells with amorphous silicon and organic absorber layers are studied and the results are presented.","PeriodicalId":365601,"journal":{"name":"Volume 2A: 45th Design Automation Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Engineering design is usually an iterative procedure where many different configurations are tested to yield a desirable end performance. When the design objective can only be measured by costly operations such as experiments or cumbersome computer simulations, a thorough design procedure can be limited. The design problem in these cases is a high cost optimization problem. Meta model-based approaches (e.g. Bayesian optimization) and transfer optimization are methods that can be used to facilitate more efficient designs. Transfer optimization is a technique that enables using previous design knowledge instead of starting from scratch in a new task. In this work, we study a transfer optimization framework based on Bayesian optimization using Gaussian Processes. The similarity among the tasks is determined via a similarity metric. The framework is applied to a particular design problem of thin film solar cells. Planar multilayer solar cells with different sets of materials are optimized to obtain the best opto-electrical efficiency. Solar cells with amorphous silicon and organic absorber layers are studied and the results are presented.