Explicit Expansions for Multivariate Diffusions

Xiangwei Wan, Nian Yang
{"title":"Explicit Expansions for Multivariate Diffusions","authors":"Xiangwei Wan, Nian Yang","doi":"10.2139/ssrn.3748893","DOIUrl":null,"url":null,"abstract":"In this paper, by adopting a quasi-Lamperti transform unitizing the process’ diffusion matrix at the initial time, we provide a new explicit recursive formula to compute the expansion coefficients for the pathwise Taylor expansion method of Li (2013). The quasi-Lamperti transform also allows us to recalculate the expansion coefficients for the Hermite expansion method of Wan and Yang (2020) via the pathwise Taylor expansion method, and proves the equivalence between the methods of Li (2013) and Wan and Yang (2020). Based on the established connection between the delta expansion method of Yang et al. (2019) and the Hermite expansion method of Wan and Yang (2020), we unifies the three expansion methods.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3748893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, by adopting a quasi-Lamperti transform unitizing the process’ diffusion matrix at the initial time, we provide a new explicit recursive formula to compute the expansion coefficients for the pathwise Taylor expansion method of Li (2013). The quasi-Lamperti transform also allows us to recalculate the expansion coefficients for the Hermite expansion method of Wan and Yang (2020) via the pathwise Taylor expansion method, and proves the equivalence between the methods of Li (2013) and Wan and Yang (2020). Based on the established connection between the delta expansion method of Yang et al. (2019) and the Hermite expansion method of Wan and Yang (2020), we unifies the three expansion methods.
多元扩散的显式展开式
本文采用拟lamperti变换对初始时刻的过程扩散矩阵进行统一,为Li(2013)的路径Taylor展开方法提供了新的显式递推公式来计算展开系数。准lamperti变换还允许我们通过路径Taylor展开方法重新计算Wan and Yang(2020)的Hermite展开方法的展开系数,并证明Li(2013)和Wan and Yang(2020)的方法之间的等价性。基于Yang et al.(2019)的delta展开法与Wan and Yang(2020)的Hermite展开法之间建立的联系,我们将三种展开方法进行了统一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信