Decay of correlation in network flow problems

Patrick Rebeschini, S. Tatikonda
{"title":"Decay of correlation in network flow problems","authors":"Patrick Rebeschini, S. Tatikonda","doi":"10.1109/CISS.2016.7460496","DOIUrl":null,"url":null,"abstract":"We develop a general theory for the local sensitivity of optimal points of constrained network optimization problems under perturbations of the constraints. For the network flow problem, we show that local perturbations on the constraints have an impact on the components of the optimal point that decreases exponentially with the graph-theoretical distance. The exponential rate is controlled by the spectral radius of a sub-stochastic transition matrix of a killed random walk associated to the network. For graphs where this spectral radius is well-behaved (bounded, for instance) as a function of the dimension of the network, our theory yields the first-known incarnation of the decay of correlation principle in constrained optimization.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"AES-19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop a general theory for the local sensitivity of optimal points of constrained network optimization problems under perturbations of the constraints. For the network flow problem, we show that local perturbations on the constraints have an impact on the components of the optimal point that decreases exponentially with the graph-theoretical distance. The exponential rate is controlled by the spectral radius of a sub-stochastic transition matrix of a killed random walk associated to the network. For graphs where this spectral radius is well-behaved (bounded, for instance) as a function of the dimension of the network, our theory yields the first-known incarnation of the decay of correlation principle in constrained optimization.
网络流问题中相关性的衰减
给出了约束扰动下约束网络优化问题最优点局部灵敏度的一般理论。对于网络流问题,我们证明了约束上的局部扰动对最优点的分量有影响,最优点的分量随图论距离呈指数递减。指数速率由与网络相关的被消灭随机游动的次随机转移矩阵的谱半径控制。对于谱半径作为网络维度的函数表现良好(例如有界)的图,我们的理论产生了约束优化中相关原理衰减的第一个已知化身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信