Design and performance of tree-structured vector quantizers

Jianhua Lin, J. Storer
{"title":"Design and performance of tree-structured vector quantizers","authors":"Jianhua Lin, J. Storer","doi":"10.1109/DCC.1993.253120","DOIUrl":null,"url":null,"abstract":"This paper considers optimal vector quantizers which minimize the expected distortion subject to a cost such as the number of leaves (storage cost), the leaf entropy (lossless encoding rate), the expected depth (average quantization time), or the maximum depth (maximum quantization time). It analyzes the heuristic of successive partitioning, and develops a class of strategies subsuming most of those used in the past. Experimental results show that these strategies are more efficient than existing methods, and achieve comparable or better compression. The relationship among different cost functions is considered and ways of combining multiple cost constraints are proposed.<<ETX>>","PeriodicalId":315077,"journal":{"name":"[Proceedings] DCC `93: Data Compression Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] DCC `93: Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1993.253120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper considers optimal vector quantizers which minimize the expected distortion subject to a cost such as the number of leaves (storage cost), the leaf entropy (lossless encoding rate), the expected depth (average quantization time), or the maximum depth (maximum quantization time). It analyzes the heuristic of successive partitioning, and develops a class of strategies subsuming most of those used in the past. Experimental results show that these strategies are more efficient than existing methods, and achieve comparable or better compression. The relationship among different cost functions is considered and ways of combining multiple cost constraints are proposed.<>
树结构矢量量化器的设计与性能
本文考虑的最优矢量量化器是在一定代价下最小化预期失真,如叶子数(存储成本)、叶子熵(无损编码率)、预期深度(平均量化时间)或最大深度(最大量化时间)。分析了连续划分的启发式,并开发了一类包含大多数过去使用的策略的策略。实验结果表明,这些策略比现有的方法效率更高,可以达到相当或更好的压缩效果。考虑了不同成本函数之间的关系,提出了组合多个成本约束的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信