Automated Insights on Visualizations with Natural Language Generation

R. Brath, Craig Hagerman
{"title":"Automated Insights on Visualizations with Natural Language Generation","authors":"R. Brath, Craig Hagerman","doi":"10.1109/IV53921.2021.00052","DOIUrl":null,"url":null,"abstract":"Quantitative data, such as a 10k financial report, requires cognitive effort to scan the columns and rows and identify patterns and important takeaways, whether novice or subject matter expert. Visualizations can be used to summarize and reveal patterns. However, unless a visualization contains arrows or other callouts, it still requires cognitive effort to understand and rank the important conclusions to which a reader should pay attention. In this research, we aim to reduce the cognitive effort in understanding tabular data by combining charts with ranked natural language generated (NLG) bullet point statements that summarize the top takeaways. The contribution of this work is an NLG pipeline to computationally extract insights from tabular data and provide textual comments, which are then integrated with visualizations of the same data set.","PeriodicalId":380260,"journal":{"name":"2021 25th International Conference Information Visualisation (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV53921.2021.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Quantitative data, such as a 10k financial report, requires cognitive effort to scan the columns and rows and identify patterns and important takeaways, whether novice or subject matter expert. Visualizations can be used to summarize and reveal patterns. However, unless a visualization contains arrows or other callouts, it still requires cognitive effort to understand and rank the important conclusions to which a reader should pay attention. In this research, we aim to reduce the cognitive effort in understanding tabular data by combining charts with ranked natural language generated (NLG) bullet point statements that summarize the top takeaways. The contribution of this work is an NLG pipeline to computationally extract insights from tabular data and provide textual comments, which are then integrated with visualizations of the same data set.
使用自然语言生成的可视化自动洞察
定量数据,比如一份10k的财务报告,无论是新手还是主题专家,都需要认知能力来扫描列和行,识别模式和重要的内容。可视化可以用来总结和揭示模式。然而,除非可视化包含箭头或其他标注,否则它仍然需要认知努力来理解和排序读者应该注意的重要结论。在这项研究中,我们的目标是通过将图表与排名自然语言生成(NLG)的要点语句相结合来减少理解表格数据的认知努力,这些要点语句总结了最重要的要点。这项工作的贡献是一个NLG管道,用于从表格数据中计算提取见解,并提供文本注释,然后将其与同一数据集的可视化集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信