Research on Target Detection algorithm based on Deep Learning Technology

Bingzhen Li, Wenzhi Jiang, Jiaojiao Gu
{"title":"Research on Target Detection algorithm based on Deep Learning Technology","authors":"Bingzhen Li, Wenzhi Jiang, Jiaojiao Gu","doi":"10.1109/ICPECA51329.2021.9362714","DOIUrl":null,"url":null,"abstract":"This paper summarizes the research progress of target detection using convolution neural network in recent years. These studies not only cover the design of all kinds of convolution neural network target detection algorithms, but also provide a deeper perspective for the development of computer vision. On the basis of consulting the data, this paper focuses on the representative Faster-RCNN, YOLO V3 and SSD algorithms. By reviewing their predecessor algorithms, covering the current mainstream target detection algorithms, and analyzing the technologies they use, summarize and analyze their advantages and disadvantages. And in the last part, it points out the still existing problems in target detection and the development direction in the future.","PeriodicalId":119798,"journal":{"name":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA51329.2021.9362714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper summarizes the research progress of target detection using convolution neural network in recent years. These studies not only cover the design of all kinds of convolution neural network target detection algorithms, but also provide a deeper perspective for the development of computer vision. On the basis of consulting the data, this paper focuses on the representative Faster-RCNN, YOLO V3 and SSD algorithms. By reviewing their predecessor algorithms, covering the current mainstream target detection algorithms, and analyzing the technologies they use, summarize and analyze their advantages and disadvantages. And in the last part, it points out the still existing problems in target detection and the development direction in the future.
基于深度学习技术的目标检测算法研究
综述了近年来利用卷积神经网络进行目标检测的研究进展。这些研究不仅涵盖了各种卷积神经网络目标检测算法的设计,而且为计算机视觉的发展提供了更深入的视角。在查阅数据的基础上,重点研究了具有代表性的Faster-RCNN、YOLO V3和SSD算法。通过回顾它们的前人算法,涵盖目前主流的目标检测算法,并分析它们所使用的技术,总结分析它们的优缺点。最后指出了目标检测中存在的问题和今后的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信