Surprisingness - A Novel Objective Interestingness Measure in Hypergraph Pattern Mining from Knowledge Graphs for Common Sense Learning

Shujing Ke, P. Spronck, B. Goertzel, Alex Van der Peet
{"title":"Surprisingness - A Novel Objective Interestingness Measure in Hypergraph Pattern Mining from Knowledge Graphs for Common Sense Learning","authors":"Shujing Ke, P. Spronck, B. Goertzel, Alex Van der Peet","doi":"10.1109/ICKG52313.2021.00017","DOIUrl":null,"url":null,"abstract":"Pattern mining usually results in huge amounts of patterns, among which only small percentages are interesting. In this paper, Surprisingness (including Surpringness_I and Surpringness_II) is proposed as an innovative objective multivariate interestingness measure for automatically identifying interesting patterns from a large quantity of patterns. Surprisingness is applicable in unstructured or semi-structured, multi-domain or mixed-domain data compared to existing measures. An experiment has been conducted enabling unsupervised learning of common sense, interesting patterns and exceptions from a knowledge graph database built from Wikipedia 1 extracted data (represented as directed labeled hypergraphs), using Surpringness.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pattern mining usually results in huge amounts of patterns, among which only small percentages are interesting. In this paper, Surprisingness (including Surpringness_I and Surpringness_II) is proposed as an innovative objective multivariate interestingness measure for automatically identifying interesting patterns from a large quantity of patterns. Surprisingness is applicable in unstructured or semi-structured, multi-domain or mixed-domain data compared to existing measures. An experiment has been conducted enabling unsupervised learning of common sense, interesting patterns and exceptions from a knowledge graph database built from Wikipedia 1 extracted data (represented as directed labeled hypergraphs), using Surpringness.
惊奇度——基于常识学习的知识图超图模式挖掘中的一种新的客观兴趣度度量
模式挖掘通常会产生大量的模式,其中只有一小部分是有趣的。本文提出了一种创新的客观多元兴趣度度量,用于从大量模式中自动识别有趣模式。与现有度量相比,惊奇度适用于非结构化或半结构化、多域或混合域数据。已经进行了一个实验,使用Surpringness从维基百科1提取的数据(表示为有向标记超图)构建的知识图谱数据库中实现常识、有趣模式和例外的无监督学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信