{"title":"The Technological Arms Race in Hardware Security","authors":"Shahin Tajik, P. Schaumont","doi":"10.1109/EMCSI39492.2022.9889394","DOIUrl":null,"url":null,"abstract":"For many years there has been an arms race between designers and adversaries of secure hardware. Improvements in the strategies for attack spur new defense techniques, and better defenses lead to improved attacks. In this contribution, first, we examine the technological dimensions of this arms race. While defenders benefit from increased circuit density and decreasing feature size, attackers benefit from novel side-channel attack vectors based on optical and electromagnetic interactions with their target. Second, we analyze the feasibility and applicability of various side-channel attacks on primary units of cryptographic hardware. We also discuss the required time, cost, and expertise to mount these attacks. We then examine how well modern defense methods are capable of thwarting modern attack methods.","PeriodicalId":250856,"journal":{"name":"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"R-34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI39492.2022.9889394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For many years there has been an arms race between designers and adversaries of secure hardware. Improvements in the strategies for attack spur new defense techniques, and better defenses lead to improved attacks. In this contribution, first, we examine the technological dimensions of this arms race. While defenders benefit from increased circuit density and decreasing feature size, attackers benefit from novel side-channel attack vectors based on optical and electromagnetic interactions with their target. Second, we analyze the feasibility and applicability of various side-channel attacks on primary units of cryptographic hardware. We also discuss the required time, cost, and expertise to mount these attacks. We then examine how well modern defense methods are capable of thwarting modern attack methods.