Classification and Discrimination for Traditional Chinese Medicine Nature Based on OSC-OPLS/O2PLS-DA

Bin Nie, Jianqiang Du, Guoliang Xu, Riyue Yu, Zhuo Wang, Hongnin Liu, Bingtao Li
{"title":"Classification and Discrimination for Traditional Chinese Medicine Nature Based on OSC-OPLS/O2PLS-DA","authors":"Bin Nie, Jianqiang Du, Guoliang Xu, Riyue Yu, Zhuo Wang, Hongnin Liu, Bingtao Li","doi":"10.1109/IFITA.2010.190","DOIUrl":null,"url":null,"abstract":"the research for Chinese herbs’ warm and cold natures classification is a significative thing for clinical. The paper put forward a new model classification and discrimination for Traditional Chinese medicine(TCM)' nature based on orthogonal signal correction-orthogonal partial least squares-discriminant analysis (OSC-OPLS/O2PLS-DA) after normalization. The first, data preprocessing and normalization for the metabolites sample space’s data, and the results data 135 multiply 839 dimension consist of three sections: warm nature’s normalization sample, cold nature’s normalization sample, blank group normalization sample; The second, OSC, dimension reduction and noise reduction for the metabolites sample space’s data; the third, OPLS/O2PLS-DA, Generate classification and discrimination Method for Traditional Chinese medicine(TCM)' nature. The model was proved to be feasible and effective after tested with 6 type’s warm nature’s herbs, 6 type’s cold nature’s herbs.","PeriodicalId":393802,"journal":{"name":"2010 International Forum on Information Technology and Applications","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Forum on Information Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFITA.2010.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

the research for Chinese herbs’ warm and cold natures classification is a significative thing for clinical. The paper put forward a new model classification and discrimination for Traditional Chinese medicine(TCM)' nature based on orthogonal signal correction-orthogonal partial least squares-discriminant analysis (OSC-OPLS/O2PLS-DA) after normalization. The first, data preprocessing and normalization for the metabolites sample space’s data, and the results data 135 multiply 839 dimension consist of three sections: warm nature’s normalization sample, cold nature’s normalization sample, blank group normalization sample; The second, OSC, dimension reduction and noise reduction for the metabolites sample space’s data; the third, OPLS/O2PLS-DA, Generate classification and discrimination Method for Traditional Chinese medicine(TCM)' nature. The model was proved to be feasible and effective after tested with 6 type’s warm nature’s herbs, 6 type’s cold nature’s herbs.
基于OSC-OPLS/O2PLS-DA的中药性质分类与判别
中草药温寒性分类的研究对临床具有重要意义。提出了一种归一化后基于正交信号校正-正交偏最小二乘判别分析(OSC-OPLS/O2PLS-DA)的中药性质分类判别新模型。首先,对代谢物样本空间的数据进行数据预处理和归一化,结果数据135乘839维由三部分组成:暖性归一化样本、冷性归一化样本、空白组归一化样本;二是对代谢物样本空间的数据进行OSC、降维和降噪处理;第三,OPLS/O2PLS-DA,生成中药性质分类与鉴别方法。通过对6类温性、6类寒性药材的试验,验证了该模型的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信