Computational Study of Heat Transfer Behavior in Fluid-Solid Fluidized Beds.

Sherko Flamarz
{"title":"Computational Study of Heat Transfer Behavior in Fluid-Solid Fluidized Beds.","authors":"Sherko Flamarz","doi":"10.17656/SJES.10132","DOIUrl":null,"url":null,"abstract":"Heat transfer in fluid-solid fluidized beds is investigated using a combined of computational fluid dynamics (CFD) and discrete element method (DEM) approach, incorporated with a thermal model. The approach has taken into account almost all the mechanisms in heat transfer in fluidized beds. A comparison and validation of hydrodynamic and thermal data of fluidized bed obtained using CFD-DEM thermal approach with experimental and numerical results data in the literature is carried out. The simulations results reveal a good thermal steady state during the simulation time for calculating the thermal behaviors of fluidized beds like; the mean particle temperature, bed porosity, heat transfer coefficient and mean particle Reynolds number. The simulations results are showed a good agreement and consistency with the experimental and numerical data in the literatures. Thus, the integration of combined CFD-DEM with the thermal model is a step toward for the prediction, development the heat transfer efficiency in fluid-solid system, and the decrease of energy consumption of the industrial applications.","PeriodicalId":307862,"journal":{"name":"Sulaimani Journal for Engineering Sciences","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sulaimani Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17656/SJES.10132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heat transfer in fluid-solid fluidized beds is investigated using a combined of computational fluid dynamics (CFD) and discrete element method (DEM) approach, incorporated with a thermal model. The approach has taken into account almost all the mechanisms in heat transfer in fluidized beds. A comparison and validation of hydrodynamic and thermal data of fluidized bed obtained using CFD-DEM thermal approach with experimental and numerical results data in the literature is carried out. The simulations results reveal a good thermal steady state during the simulation time for calculating the thermal behaviors of fluidized beds like; the mean particle temperature, bed porosity, heat transfer coefficient and mean particle Reynolds number. The simulations results are showed a good agreement and consistency with the experimental and numerical data in the literatures. Thus, the integration of combined CFD-DEM with the thermal model is a step toward for the prediction, development the heat transfer efficiency in fluid-solid system, and the decrease of energy consumption of the industrial applications.
流固流化床传热行为的计算研究。
采用计算流体力学(CFD)和离散元法(DEM)相结合的方法,结合热学模型对流固流化床的传热进行了研究。该方法几乎考虑了流化床传热的所有机理。将CFD-DEM热方法得到的流化床流体动力和热数据与文献中的实验和数值结果数据进行了对比和验证。模拟结果表明,在模拟时间内具有良好的热稳态,可用于计算流化床的热行为;平均颗粒温度、床层孔隙度、传热系数和平均颗粒雷诺数。仿真结果与文献中的实验和数值数据有较好的一致性。因此,将CFD-DEM与热学模型相结合,是预测、提高流固系统传热效率、降低工业应用能耗的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信