Some structural complexity aspects of neural computation

J. Balcázar, Ricard Gavaldà, H. Siegelmann, Eduardo Sontag
{"title":"Some structural complexity aspects of neural computation","authors":"J. Balcázar, Ricard Gavaldà, H. Siegelmann, Eduardo Sontag","doi":"10.1109/SCT.1993.336521","DOIUrl":null,"url":null,"abstract":"Recent work by H.T. Siegelmann and E.D. Sontag (1992) has demonstrated that polynomial time on linear saturated recurrent neural networks equals polynomial time on standard computational models: Turing machines if the weights of the net are rationals, and nonuniform circuits if the weights are real. Here, further connections between the languages recognized by such neural nets and other complexity classes are developed. Connections to space-bounded classes, simulation of parallel computational models such as Vector Machines, and a discussion of the characterizations of various nonuniform classes in terms of Kolmogorov complexity are presented.<<ETX>>","PeriodicalId":331616,"journal":{"name":"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1993.336521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Recent work by H.T. Siegelmann and E.D. Sontag (1992) has demonstrated that polynomial time on linear saturated recurrent neural networks equals polynomial time on standard computational models: Turing machines if the weights of the net are rationals, and nonuniform circuits if the weights are real. Here, further connections between the languages recognized by such neural nets and other complexity classes are developed. Connections to space-bounded classes, simulation of parallel computational models such as Vector Machines, and a discussion of the characterizations of various nonuniform classes in terms of Kolmogorov complexity are presented.<>
神经计算的结构复杂性
H.T. Siegelmann和E.D. Sontag(1992)最近的工作已经证明,线性饱和递归神经网络上的多项式时间等于标准计算模型上的多项式时间:如果网络的权重是有理数,则图灵机,如果权重是实数,则非均匀电路。在这里,这种神经网络识别的语言和其他复杂类之间的进一步联系被开发出来。介绍了与空间有界类的连接、并行计算模型(如向量机)的模拟以及根据Kolmogorov复杂度对各种非均匀类的表征的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信