Predictable Forward Performance Processes: Infrequent Evaluation and Robo-Advising Applications

Gechun Liang, Moris S. Strub, Yuwei Wang
{"title":"Predictable Forward Performance Processes: Infrequent Evaluation and Robo-Advising Applications","authors":"Gechun Liang, Moris S. Strub, Yuwei Wang","doi":"10.2139/ssrn.3944223","DOIUrl":null,"url":null,"abstract":"We study discrete-time predictable forward processes when trading times do not coincide with performance evaluation times in the binomial tree model for the financial market. The key step in the construction of these processes is to solve a linear functional equation of higher order associated with the inverse problem driving the evolution of the predictable forward process. We provide sufficient conditions for the existence and uniqueness and an explicit construction of the predictable forward process under these conditions. Furthermore, we show that these processes are time-monotone in the evaluation period. Finally, we argue that predictable forward preferences are a viable framework to model preferences for robo-advising applications and determine an optimal interaction schedule between client and robo-advisor that balances a tradeoff between increasing uncertainty about the client's beliefs on the financial market and an interaction cost.","PeriodicalId":377322,"journal":{"name":"Investments eJournal","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investments eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3944223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study discrete-time predictable forward processes when trading times do not coincide with performance evaluation times in the binomial tree model for the financial market. The key step in the construction of these processes is to solve a linear functional equation of higher order associated with the inverse problem driving the evolution of the predictable forward process. We provide sufficient conditions for the existence and uniqueness and an explicit construction of the predictable forward process under these conditions. Furthermore, we show that these processes are time-monotone in the evaluation period. Finally, we argue that predictable forward preferences are a viable framework to model preferences for robo-advising applications and determine an optimal interaction schedule between client and robo-advisor that balances a tradeoff between increasing uncertainty about the client's beliefs on the financial market and an interaction cost.
可预测的前向绩效过程:不常见的评估和机器人咨询应用
本文研究了金融市场二项树模型中交易时间与业绩评估时间不重合时的离散时间可预测的正向过程。构建这些过程的关键步骤是求解与驱动可预测正向过程演化的逆问题相关的高阶线性泛函方程。给出了可预测正过程存在唯一性的充分条件,并在这些条件下给出了可预测正过程的明确构造。此外,我们证明了这些过程在评估期间是时间单调的。最后,我们认为,可预测的远期偏好是一个可行的框架,可以对机器人咨询应用程序的偏好进行建模,并确定客户和机器人顾问之间的最佳交互时间表,以平衡客户对金融市场信念的不确定性和交互成本之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信