Friend Recommendation System Using Map-Reduce and Spark: A Comparison Study

A.M. Abhishek Sai, Gottimukkala Sahil, Boddu Sasi Sai Nadh, Kalla Likhit Sai Eswar, N. S, K. Prakash, A. Mahesh
{"title":"Friend Recommendation System Using Map-Reduce and Spark: A Comparison Study","authors":"A.M. Abhishek Sai, Gottimukkala Sahil, Boddu Sasi Sai Nadh, Kalla Likhit Sai Eswar, N. S, K. Prakash, A. Mahesh","doi":"10.1109/ICITIIT57246.2023.10068723","DOIUrl":null,"url":null,"abstract":"Connecting with other people online is common practice and huge amounts of data are generated each day by increasing web activity. This type of data collection can be used to recommend friends on social media. We have utilized Map Reduce and Spark to analyze the vast amount of data. A Friend Recommendation system has been implemented using Map Reduce and Spark. Furthermore, we compared both Distributed Computation techniques in order to determine the optimum solution. We found that spark computation is 16 times faster than Hadoop Map-Reduce computation for Friend Recommendation System. Spark proves to be more efficient than map-reduce in terms of time efficiency.","PeriodicalId":170485,"journal":{"name":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT57246.2023.10068723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Connecting with other people online is common practice and huge amounts of data are generated each day by increasing web activity. This type of data collection can be used to recommend friends on social media. We have utilized Map Reduce and Spark to analyze the vast amount of data. A Friend Recommendation system has been implemented using Map Reduce and Spark. Furthermore, we compared both Distributed Computation techniques in order to determine the optimum solution. We found that spark computation is 16 times faster than Hadoop Map-Reduce computation for Friend Recommendation System. Spark proves to be more efficient than map-reduce in terms of time efficiency.
基于Map-Reduce和Spark的好友推荐系统的比较研究
在网上与其他人联系是一种常见的做法,随着网络活动的增加,每天都会产生大量的数据。这种类型的数据收集可以用来在社交媒体上推荐朋友。我们使用Map Reduce和Spark来分析大量的数据。利用mapreduce和Spark实现了一个好友推荐系统。此外,我们比较了两种分布式计算技术,以确定最佳解决方案。我们发现spark计算比Hadoop Map-Reduce计算在朋友推荐系统中的速度快16倍。在时间效率方面,Spark被证明比map-reduce更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信