Neutrality and geometry of mean voting

Sébastien Lahaie, Nisarg Shah
{"title":"Neutrality and geometry of mean voting","authors":"Sébastien Lahaie, Nisarg Shah","doi":"10.1145/2600057.2602898","DOIUrl":null,"url":null,"abstract":"Mean proximity rules provide a simple geometric framework to achieve consensus among a collection of rankings (votes) over a set of alternatives. They embed all rankings into a Euclidean space, take the mean of the embeddings of the input votes, and return the ranking whose embedding is closest to the mean. Previous work on mean proximity rules has not integrated an important axiom---neutrality---into the framework. By drawing on ideas from the representation theory of finite groups, we show that integrating neutrality actually helps achieve a succinct representation for every mean proximity rule. Various connections are drawn between mean proximity rules and other prominent approaches to social choice.","PeriodicalId":203155,"journal":{"name":"Proceedings of the fifteenth ACM conference on Economics and computation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM conference on Economics and computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600057.2602898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Mean proximity rules provide a simple geometric framework to achieve consensus among a collection of rankings (votes) over a set of alternatives. They embed all rankings into a Euclidean space, take the mean of the embeddings of the input votes, and return the ranking whose embedding is closest to the mean. Previous work on mean proximity rules has not integrated an important axiom---neutrality---into the framework. By drawing on ideas from the representation theory of finite groups, we show that integrating neutrality actually helps achieve a succinct representation for every mean proximity rule. Various connections are drawn between mean proximity rules and other prominent approaches to social choice.
中立性和几何平均投票
平均接近规则提供了一个简单的几何框架,以在一组备选方案的排名(投票)集合中达成共识。他们将所有排名嵌入到欧几里得空间中,取输入投票嵌入的平均值,并返回嵌入最接近平均值的排名。之前关于平均接近规则的工作并没有将一个重要的公理——中立性——整合到框架中。通过借鉴有限群表示理论的思想,我们证明了积分中立性实际上有助于实现每个平均邻近规则的简洁表示。在平均接近规则和其他突出的社会选择方法之间建立了各种联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信