On Solving Fuzzy Multi-Objective Multi-Choice Stochastic Transportation Problems

{"title":"On Solving Fuzzy Multi-Objective Multi-Choice Stochastic Transportation Problems","authors":"","doi":"10.4018/978-1-5225-8301-1.ch009","DOIUrl":null,"url":null,"abstract":"This chapter presents solution procedures for solving unbalanced multi-objective multi-choice stochastic transportation problems in a hybrid fuzzy uncertain environment. In this chapter, various types of unbalanced multi-objective fuzzy stochastic transportation models are considered with the assumption that the parameters representing supplies of the products at the origins and demands of the products at the destinations, capacity of the conveyances, associated with the system constraints are either fuzzy numbers (FNs) or fuzzy random variables (FRVs) with some known continuous fuzzy probability distributions. The multi-choice cost parameters are considered as FNs. In this chapter, two objectives are considered: total transportation cost and total transportation time. As the transportation cost mainly depends on fuel prices and since fuel prices are highly fluctuating, the cost parameters are taken as multi-choice cost parameters with possibilistic uncertain nature. The time of transportation mainly depends on vehicle conditions, quality of roads, and road congestion. Due to these uncertain natures, the parameters representing time of transportation are also taken as fuzzy uncertain multi-choice parameters. In this transportation model, these objectives are minimized satisfying the constraints: product availability constraints, requirement of the product constraints, and capacity of the conveyance constraints. Numerical examples are provided for the sake of illustration of the methodology presented in this chapter, and also achieved solutions are compared with the solutions obtained by some existing methodologies to establish its effectiveness.","PeriodicalId":404955,"journal":{"name":"Multi-Objective Stochastic Programming in Fuzzy Environments","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multi-Objective Stochastic Programming in Fuzzy Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-8301-1.ch009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter presents solution procedures for solving unbalanced multi-objective multi-choice stochastic transportation problems in a hybrid fuzzy uncertain environment. In this chapter, various types of unbalanced multi-objective fuzzy stochastic transportation models are considered with the assumption that the parameters representing supplies of the products at the origins and demands of the products at the destinations, capacity of the conveyances, associated with the system constraints are either fuzzy numbers (FNs) or fuzzy random variables (FRVs) with some known continuous fuzzy probability distributions. The multi-choice cost parameters are considered as FNs. In this chapter, two objectives are considered: total transportation cost and total transportation time. As the transportation cost mainly depends on fuel prices and since fuel prices are highly fluctuating, the cost parameters are taken as multi-choice cost parameters with possibilistic uncertain nature. The time of transportation mainly depends on vehicle conditions, quality of roads, and road congestion. Due to these uncertain natures, the parameters representing time of transportation are also taken as fuzzy uncertain multi-choice parameters. In this transportation model, these objectives are minimized satisfying the constraints: product availability constraints, requirement of the product constraints, and capacity of the conveyance constraints. Numerical examples are provided for the sake of illustration of the methodology presented in this chapter, and also achieved solutions are compared with the solutions obtained by some existing methodologies to establish its effectiveness.
求解模糊多目标多选择随机运输问题
本章给出了模糊不确定混合环境下不平衡多目标多选择随机运输问题的求解过程。在本章中,考虑了各种类型的不平衡多目标模糊随机运输模型,假设与系统约束相关的参数表示原点产品的供应和目的地产品的需求,运输能力是模糊数(FNs)或模糊随机变量(frv),具有一些已知的连续模糊概率分布。将多选择成本参数视为FNs。在本章中,考虑了两个目标:总运输成本和总运输时间。由于运输成本主要取决于燃料价格,由于燃料价格波动较大,因此将成本参数作为具有可能性不确定性的多选择成本参数。运输时间主要取决于车辆状况、道路质量和道路拥堵情况。由于这些不确定性,表示运输时间的参数也被视为模糊不确定多选择参数。在这个运输模型中,这些目标被最小化以满足以下约束:产品可用性约束、产品需求约束和运输能力约束。为了说明本章所提出的方法,给出了数值算例,并将所得到的解与现有的一些方法得到的解进行了比较,以证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信