SOR Revisited: Partitioning and Recovering after Shrinking

Manki Min, Austin F. O'Brien, Sung Y. Shin
{"title":"SOR Revisited: Partitioning and Recovering after Shrinking","authors":"Manki Min, Austin F. O'Brien, Sung Y. Shin","doi":"10.1109/ICCCN.2008.ECP.147","DOIUrl":null,"url":null,"abstract":"In this paper, we present an enhancement to our previously proposed algorithm, SOR, for the minimum energy broadcasting problem in wireless sensor ad hoc networks. We implement the enhanced algorithm, PSOR (Partitioning- based SOR), and compare its solution quality with other algorithms in the literature: BIP, OMEGa, SOR, and EWMA. The enhancement comes from the diversification of solution space by allowing more shrinking than the original algorithm, SOR. We can achieve the diverse solution search without hurting the original algorithm's theoretical performance bound. The experimental results confirm that the enhancement further improves the solution quality of the original algorithm, SOR.","PeriodicalId":314071,"journal":{"name":"2008 Proceedings of 17th International Conference on Computer Communications and Networks","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Proceedings of 17th International Conference on Computer Communications and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2008.ECP.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present an enhancement to our previously proposed algorithm, SOR, for the minimum energy broadcasting problem in wireless sensor ad hoc networks. We implement the enhanced algorithm, PSOR (Partitioning- based SOR), and compare its solution quality with other algorithms in the literature: BIP, OMEGa, SOR, and EWMA. The enhancement comes from the diversification of solution space by allowing more shrinking than the original algorithm, SOR. We can achieve the diverse solution search without hurting the original algorithm's theoretical performance bound. The experimental results confirm that the enhancement further improves the solution quality of the original algorithm, SOR.
SOR重访:收缩后的分区和恢复
在本文中,我们提出了一个改进我们以前提出的算法,SOR,在无线传感器自组织网络的最小能量广播问题。我们实现了增强算法PSOR(基于分区的SOR),并将其解质量与文献中的其他算法(BIP, OMEGa, SOR和EWMA)进行了比较。这种增强来自于通过允许比原始算法SOR更大的收缩来实现解空间的多样化。我们可以在不损害原算法理论性能界限的情况下实现多元解搜索。实验结果证实,改进后的算法进一步提高了原算法的解质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信