{"title":"Fast motion planning for multiple moving robots","authors":"S. Buckley","doi":"10.1109/ROBOT.1989.100008","DOIUrl":null,"url":null,"abstract":"The author presents an efficient solution to the motion-planning problem for multiple translating robots in the plane. It is shown that careful priority assignment can greatly reduce the average running time of the planner. A priority assignment method is introduced which attempts to maximize the number of robots which can move in a straight line form their start point to their goal point, thereby minimizing the number of robots for which expensive collision-avoiding search is necessary. This prioritization method is extremely effective in sparse workspaces where the moving robots are the primary obstacle.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.100008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192
Abstract
The author presents an efficient solution to the motion-planning problem for multiple translating robots in the plane. It is shown that careful priority assignment can greatly reduce the average running time of the planner. A priority assignment method is introduced which attempts to maximize the number of robots which can move in a straight line form their start point to their goal point, thereby minimizing the number of robots for which expensive collision-avoiding search is necessary. This prioritization method is extremely effective in sparse workspaces where the moving robots are the primary obstacle.<>