Multidimensional Models: Martingale Approach

T. Björk
{"title":"Multidimensional Models: Martingale Approach","authors":"T. Björk","doi":"10.1093/0199271267.003.0014","DOIUrl":null,"url":null,"abstract":"In this chapter we study a very general multidimensional Wiener-driven model using the martingale approach. Using the Girsanov Theorem we derive the martingale equation which is used to find an equivalent martingale measure. We provide conditions for absence of arbitrage and completeness of the model, and we discuss hedging and pricing. For Markovian models we derive the relevant pricing PDE and we also provide an explicit representation formula for the stochastic discount factor. We discuss the relation between the market price of risk and the Girsanov kernel and finally we derive the Hansen–Jagannathan bounds for the Sharpe ratio.","PeriodicalId":311283,"journal":{"name":"Arbitrage Theory in Continuous Time","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arbitrage Theory in Continuous Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/0199271267.003.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter we study a very general multidimensional Wiener-driven model using the martingale approach. Using the Girsanov Theorem we derive the martingale equation which is used to find an equivalent martingale measure. We provide conditions for absence of arbitrage and completeness of the model, and we discuss hedging and pricing. For Markovian models we derive the relevant pricing PDE and we also provide an explicit representation formula for the stochastic discount factor. We discuss the relation between the market price of risk and the Girsanov kernel and finally we derive the Hansen–Jagannathan bounds for the Sharpe ratio.
多维模型:鞅方法
在本章中,我们使用鞅方法研究了一个非常一般的多维维纳驱动模型。利用格萨诺夫定理推导出鞅方程,用它来求等价的鞅测度。给出了套利不存在的条件和模型的完备性,讨论了套期保值和定价问题。对于马尔可夫模型,我们推导了相关的定价PDE,并给出了随机折扣因子的显式表示公式。讨论了风险的市场价格与Girsanov核之间的关系,最后导出了夏普比率的Hansen-Jagannathan界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信