Localization

H. Chandler
{"title":"Localization","authors":"H. Chandler","doi":"10.1201/9780429440021-22","DOIUrl":null,"url":null,"abstract":". Ensemble Kalman inversion (EKI) is a technique for the numerical solution of inverse problems. A great advantage of the EKI’s ensemble approach is that derivatives are not required in its implementation. But theo-retically speaking, EKI’s ensemble size needs to surpass the dimension of the problem. This is because of EKI’s “subspace property”, i.e., that the EKI solution is a linear combination of the initial ensemble it starts off with. We show that the ensemble can break out of this initial subspace when “localization” is applied. In essence, localization enforces an assumed correlation structure onto the problem, and is heavily used in ensemble Kalman filtering and data assimilation. We describe and analyze how to apply localization to the EKI, and how localization helps the EKI ensemble break out of the initial subspace. Specifically, we show that the localized EKI (LEKI) ensemble will collapse to a single point (as intended) and that the LEKI ensemble mean will converge to the global optimum at a sublinear rate. Under strict assumptions on the localization procedure and observation process, we further show that the data misfit decays uniformly. We illustrate our ideas and theoretical developments with numerical examples with simplified toy problems, a Lorenz model, and an inversion of electromagnetic data, where some of our mathematical assump- tions may only be approximately valid.","PeriodicalId":149865,"journal":{"name":"The Game Production Toolbox","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Game Production Toolbox","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429440021-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Ensemble Kalman inversion (EKI) is a technique for the numerical solution of inverse problems. A great advantage of the EKI’s ensemble approach is that derivatives are not required in its implementation. But theo-retically speaking, EKI’s ensemble size needs to surpass the dimension of the problem. This is because of EKI’s “subspace property”, i.e., that the EKI solution is a linear combination of the initial ensemble it starts off with. We show that the ensemble can break out of this initial subspace when “localization” is applied. In essence, localization enforces an assumed correlation structure onto the problem, and is heavily used in ensemble Kalman filtering and data assimilation. We describe and analyze how to apply localization to the EKI, and how localization helps the EKI ensemble break out of the initial subspace. Specifically, we show that the localized EKI (LEKI) ensemble will collapse to a single point (as intended) and that the LEKI ensemble mean will converge to the global optimum at a sublinear rate. Under strict assumptions on the localization procedure and observation process, we further show that the data misfit decays uniformly. We illustrate our ideas and theoretical developments with numerical examples with simplified toy problems, a Lorenz model, and an inversion of electromagnetic data, where some of our mathematical assump- tions may only be approximately valid.
本地化
. 集合卡尔曼反演(EKI)是一种求解反问题数值解的方法。EKI集成方法的一大优点是在其实现中不需要衍生品。但从理论上讲,EKI的整体规模需要超越问题的维度。这是因为EKI的“子空间属性”,也就是说,EKI解决方案是它开始时的初始集合的线性组合。我们表明,当应用“局部化”时,集成可以突破这个初始子空间。从本质上讲,定位将假定的相关结构强加到问题上,并大量用于集成卡尔曼滤波和数据同化。我们描述和分析了如何将定位应用到EKI中,以及定位如何帮助EKI集成脱离初始子空间。具体来说,我们证明了局部EKI (LEKI)系综将坍缩到单点(如预期的那样),并且LEKI系综均值将以亚线性速率收敛到全局最优。在严格的定位过程和观测过程假设下,进一步证明了数据失配衰减是均匀的。我们用简化的玩具问题、洛伦兹模型和电磁数据的反演的数值例子来说明我们的想法和理论发展,其中我们的一些数学假设可能只是近似有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信