{"title":"Energy Function for Direct Products of Discrete Dynamical Systems","authors":"M. Barinova, Evgenia K. Shustova","doi":"10.15507/2079-6900.25.202302.11-21","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the construction of an energy function, i.e. a smooth Lyapunov function, whose set of critical points coincides with the chain-recurrent set of a dynamical system — for a cascade that is a direct product of two systems. One of the multipliers is a structurally stable diffeomorphism given on a two-dimensional torus, whose non-wandering set consists of a zero-dimensional non-trivial basic set without pairs of conjugated points and without fixed source and sink, and the second one is an identical mapping on a real axis. It was previously proved that if a non-wandering set of a dynamical system contains a zero-dimensional basic set, as the diffeomorphism under consideration has, then such a system does not have an energy function, namely, any Lyapunov function will have critical points outside the chain-recurrent set. For an identical mapping, the energy function is a constant on the entire real line. In this paper, it is shown that the absence of an energy function for one of the multipliers is not a sufficient condition for the absence of such a function for the direct product of dynamical systems, that is, in some cases it is possible to select the second cascade in such a way that the direct product will have an energy function.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.25.202302.11-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the construction of an energy function, i.e. a smooth Lyapunov function, whose set of critical points coincides with the chain-recurrent set of a dynamical system — for a cascade that is a direct product of two systems. One of the multipliers is a structurally stable diffeomorphism given on a two-dimensional torus, whose non-wandering set consists of a zero-dimensional non-trivial basic set without pairs of conjugated points and without fixed source and sink, and the second one is an identical mapping on a real axis. It was previously proved that if a non-wandering set of a dynamical system contains a zero-dimensional basic set, as the diffeomorphism under consideration has, then such a system does not have an energy function, namely, any Lyapunov function will have critical points outside the chain-recurrent set. For an identical mapping, the energy function is a constant on the entire real line. In this paper, it is shown that the absence of an energy function for one of the multipliers is not a sufficient condition for the absence of such a function for the direct product of dynamical systems, that is, in some cases it is possible to select the second cascade in such a way that the direct product will have an energy function.