Using context overlays to analyse the role of a priori information with Process Mining

P. Pileggi, Alejandro Rivero Rodríguez, O. Nykänen
{"title":"Using context overlays to analyse the role of a priori information with Process Mining","authors":"P. Pileggi, Alejandro Rivero Rodríguez, O. Nykänen","doi":"10.1109/SYSCON.2015.7116823","DOIUrl":null,"url":null,"abstract":"Notwithstanding the significant advances in context-aware computing in pervasive computing and self-adaptive systems, there is still much more to be desired in providing better context services. The number of sensors deployed world-wide increases very rapidly. The Internet of Things, amongst others, generates vast amounts of data of many different data types. How data are used is essential to improve user experience and efficiencies of the systems in which they occur. We explain how familiar concepts of Process Mining strengthen generalised sensor context services. We present a laboratory case to explain the approach. By way of a real-world example, we confirm the viability of using Process Mining to strengthen context-aware computing.","PeriodicalId":251318,"journal":{"name":"2015 Annual IEEE Systems Conference (SysCon) Proceedings","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Annual IEEE Systems Conference (SysCon) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSCON.2015.7116823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Notwithstanding the significant advances in context-aware computing in pervasive computing and self-adaptive systems, there is still much more to be desired in providing better context services. The number of sensors deployed world-wide increases very rapidly. The Internet of Things, amongst others, generates vast amounts of data of many different data types. How data are used is essential to improve user experience and efficiencies of the systems in which they occur. We explain how familiar concepts of Process Mining strengthen generalised sensor context services. We present a laboratory case to explain the approach. By way of a real-world example, we confirm the viability of using Process Mining to strengthen context-aware computing.
使用上下文覆盖来分析过程挖掘中先验信息的作用
尽管在普适计算和自适应系统中上下文感知计算取得了重大进展,但在提供更好的上下文服务方面仍有很多需要改进的地方。在世界范围内部署的传感器数量迅速增加。物联网产生了大量不同数据类型的数据。如何使用数据对于改善用户体验和数据所在系统的效率至关重要。我们解释了熟悉的过程挖掘概念如何加强广义传感器上下文服务。我们提出一个实验室案例来解释这种方法。通过一个现实世界的例子,我们证实了使用过程挖掘来加强上下文感知计算的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信