Real-time optimal path planning and wind estimation using Gaussian process regression for precision airdrop

Shiyi Yang, Nan Wei, Soo Jeon, Ricardo Bencatel, A. Girard
{"title":"Real-time optimal path planning and wind estimation using Gaussian process regression for precision airdrop","authors":"Shiyi Yang, Nan Wei, Soo Jeon, Ricardo Bencatel, A. Girard","doi":"10.23919/ACC.2017.7963341","DOIUrl":null,"url":null,"abstract":"This paper presents a time-critical cargo drop strategy that allows a fixed-wing unmanned aerial vehicle (UAV) carrying a cargo under an unknown wind field, to accomplish the cargo drop mission within the least amount of time while minimizing the cargo landing error. Specifically, we treat the spatial wind distribution as a noisy vector field and apply the Gaussian process (GP) regression method to estimate the wind model. In order to optimize the strategy, the objective function to be maximized has been chosen as the weighted sum of two conflicting objectives: more knowledge of the wind field and less travel time. We present some simulation results to compare the performance of the proposed strategy with a conventional method. Results demonstrate the advantage of the proposed method in terms of accuracy and multi-functionality over the non-estimation strategy.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a time-critical cargo drop strategy that allows a fixed-wing unmanned aerial vehicle (UAV) carrying a cargo under an unknown wind field, to accomplish the cargo drop mission within the least amount of time while minimizing the cargo landing error. Specifically, we treat the spatial wind distribution as a noisy vector field and apply the Gaussian process (GP) regression method to estimate the wind model. In order to optimize the strategy, the objective function to be maximized has been chosen as the weighted sum of two conflicting objectives: more knowledge of the wind field and less travel time. We present some simulation results to compare the performance of the proposed strategy with a conventional method. Results demonstrate the advantage of the proposed method in terms of accuracy and multi-functionality over the non-estimation strategy.
基于高斯过程回归的精确空投实时最优路径规划与风估计
提出了一种在未知风场条件下携带货物的固定翼无人机(UAV)在最短时间内完成货物空投任务,同时使货物降落误差最小化的时间关键型货物空投策略。具体而言,我们将空间风分布视为一个有噪声的矢量场,并应用高斯过程(GP)回归方法对风模型进行估计。为了对策略进行优化,选择了两个相互冲突的目标(更多的风场知识和更少的行程时间)的加权和作为要最大化的目标函数。我们给出了一些仿真结果来比较该策略与传统方法的性能。结果表明,该方法在精度和多功能性方面优于非估计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信