{"title":"Fast Convolution Algorithm for Convolutional Neural Networks","authors":"Tae-Sun Kim, Ji-Hoon Bae, M. Sunwoo","doi":"10.1109/AICAS.2019.8771531","DOIUrl":null,"url":null,"abstract":"Recent advances in computing power made possible by developments of faster general-purpose graphics processing units (GPGPUs) have increased the complexity of convolutional neural network (CNN) models. However, because of the limited applications of the existing GPGPUs, CNN accelerators are becoming more important. The current accelerators focus on improvement in memory scheduling and architectures. Thus, the number of multiplier-accumulator (MAC) operations is not reduced. In this study, a new convolution layer operation algorithm is proposed using the coarse-to-fine method instead of hardware or architecture approaches. This algorithm is shown to reduce the MAC operations by 33%. However, the accuracy of the Top 1 is decreased only by 3% and the Top 5 only by 1%.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Recent advances in computing power made possible by developments of faster general-purpose graphics processing units (GPGPUs) have increased the complexity of convolutional neural network (CNN) models. However, because of the limited applications of the existing GPGPUs, CNN accelerators are becoming more important. The current accelerators focus on improvement in memory scheduling and architectures. Thus, the number of multiplier-accumulator (MAC) operations is not reduced. In this study, a new convolution layer operation algorithm is proposed using the coarse-to-fine method instead of hardware or architecture approaches. This algorithm is shown to reduce the MAC operations by 33%. However, the accuracy of the Top 1 is decreased only by 3% and the Top 5 only by 1%.